UCI researchers develop world's first plastic antibodies

Jun 21, 2010
UCI researchers develop world's first plastic antibodies
“Plastic antibodies” that UCI scientists used to stop the spread of bee venom in mice could be designed to combat deadlier toxins and pathogens. Photo by Hoang Xuan Pham

UC Irvine researchers have developed the first "plastic antibodies" successfully employed in live organisms - stopping the spread of bee venom through the bloodstream of mice.

Tiny polymeric particles - just 1/50,000th the width of a human hair - were designed to match and encase melittin, a peptide in bee venom that causes cells to rupture, releasing their contents. Large quantities of melittin can lead to and death.

The nanoparticles were prepared by "molecular imprinting" a technique similar to plaster casting: UCI chemistry professor Kenneth Shea and project scientist Yu Hoshino linked melittin with small molecules called monomers, solidifying the two into a network of long . After the plastic hardened, they removed the melittin, leaving nanoparticles with minuscule melittin-shaped holes.

When injected into mice given high doses of melittin, these precisely imprinted nanoparticles enveloped the matching melittin molecules, "capturing" them before they could disperse and wreak havoc - greatly reducing deaths among the rodents.

"Never before have synthetic antibodies been shown to effectively function in the bloodstream of living animals," Shea says. "This technique could be utilized to make plastic nanoparticles designed to fight more lethal toxins and pathogens."

Takashi Kodama of Stanford University and Hiroyuki Koide, Takeo Urakami, Hiroaki Kanazawa and Naoto Oku of Japan's University of Shizuoka also contributed to the study, published recently in the .

Unlike natural antibodies produced by live organisms and harvested for medical use, synthetic antibodies can be created in laboratories at a lower cost and have a longer shelf life.

"The bloodstream includes a sea of competing molecules - such as proteins, peptides and cells - and presents considerable challenges for the design of ," Shea says. "The success of this experiment demonstrates that these challenges can be overcome."

Explore further: Materials scientists and mathematicians benefit from newly crafted polymers

Provided by University of California - Irvine

4.9 /5 (8 votes)

Related Stories

Plastic antibody works in first tests in living animals

Jun 09, 2010

Scientists are reporting the first evidence that a plastic antibody -- an artificial version of the proteins produced by the body's immune system to recognize and fight infections and foreign substances -- works in the bloodstream ...

Tumors Feel the Deadly Sting of Nanobees

Aug 28, 2009

When bees sting, they pump into their victims a peptide toxin called melittin that destroys cell membranes. Now, by encapsulating this extremely potent molecule within a nanoparticle, researchers at the Washington University ...

Tumors feel the deadly sting of nanobees

Aug 10, 2009

(PhysOrg.com) -- When bees sting, they pump poison into their victims. Now the toxin in bee venom has been harnessed to kill tumor cells by researchers at Washington University School of Medicine in St. Louis. The researchers ...

Targeted therapy from within

Jul 28, 2009

A group of researchers at Johns Hopkins University has designed nanoparticles that can carry cancer-treating radioisotopes through the body and deliver them selectively to tumors. Today in Anaheim, CA, they will report the ...

Targeted Nanoparticles Destroy Prostate Tumors

Apr 25, 2006

Biodegradable polymer nanoparticles, linked to a protein-binding nucleic acid known as an aptamer and loaded with the anticancer agent docetaxel, can target and kill prostate tumors growing in mice. Using this targeted nanoparticle ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

trekgeek1
4.5 / 5 (2) Jun 21, 2010
It's articles like this that make Ray Kurzweil's claim that we will cure death within 30 years less ridiculous and replace my skepticism with hope. Medical advancements seem to be occurring very quickly. Bravo UCI, exactly what the world expects from the UC system.