Physicists Propose New Method for Quantum Computing

Jun 15, 2010 By Christine Buckley
Illustration from a poster by Susanne Yelin, Elena Kuznetsova, and Robin Côté.

(PhysOrg.com) -- The new system, which can compute faster and more efficiently than previous quantum computers, may bring the technology closer to reality.

Quantum computers can solve in a matter of moments problems that would take ordinary computers years to work out. But thus far, these computers exist only as state-of-the-art experimental setups in a few physics laboratories.

Now, Elena Kuznetsova, a post-doctoral researcher in UConn’s Department of Physics, has proposed a new type of quantum computer that could bring the technology one step closer to becoming a reality.

“The main excitement about quantum computers,” says Kuznetsova, “ comes from their potential ability to solve certain problems exponentially faster compared to classical computers, such as factoring a large number into its primes, which would allow us to break cryptographic codes. These problems cannot be solved using a in the foreseeable future.”

Quantum processors take advantage of the principles of quantum mechanics, in which objects behave differently at very small scales than matter does at larger scales. Usually, their processors encode information into either individual or molecules made up of two atoms. But Kuznetsova and her research group have proposed the first viable system that uses both atoms and molecules, taking advantage of the benefits of each. This system could be capable of computing faster and more efficiently than previous quantum processors.

Kuznetsova and her colleagues in physics, including graduate student Marko Gacesca and professors Susanne Yelin and Robin Côté, report their results in the March 2010 issue of Physical Review A.

As Yelin explains, there are several components to . The first challenge is to create a system that you can control well enough to perform your computing, and another is to fashion a device that will report the results without damaging the system. The most advanced to date is performed by neutral atoms, which, says Yelin, physicists have spent decades mastering and can now control to a very fine degree. These neutral atoms have no electric charge, and are therefore very difficult to get to interact with one another. This difficulty slows down the rate of computations.

In recent years, however, scientists discovered that polar molecules — which contain two atoms with equal and opposite charges — could lead to faster processing in quantum systems because the presence of these contrasting charges encourages the molecules to interact strongly with one other.

But this difference in molecular behavior is at once a great solution and a big problem, says Yelin. To be useful, these hyperactive molecules need to be cooled to only a few millionths of a degree above absolute zero, which slows them down and allows scientists to control them.

“Molecules in quantum states are very fragile,” Yelin says. “You heat them up, they’re gone. You bring them too close to each other, they’re gone. You look at them the wrong way, and they’re gone.”

Illustration from a poster by Susanne Yelin, Elena Kuznetsova, and Robin Côté.

The fragility of these molecules also poses another problem: when they’re used to report results from a quantum processor, scientists often lose control of them and the very data they’ve been trying to compute is destroyed. Until now, researchers hadn’t come up with a good way to read data out of these molecules.

In their recent paper, Kuznetsova’s group devised a way to separate the molecules into their component parts so that the ’s results can be read from the more easily controllable individual atoms. By using lasers, says Kuznetsova, they were able to break down the molecules without compromising the data encoded in them.

“We let the molecule interact with a laser light with a very specific wavelength, or color,” she says. “This excites the molecule into another excited state, from which we can, with another laser light, break it down into two atoms. It’s a nondestructive, efficient way to keep the information and read it.”

Kuznetsova says that each portion of their concept is practically feasible using current experimental methods, but only for a generalized ensemble of qubits — as units of quantum information are known — all at once. The next step toward building a computer with polar molecules, says Yelin, is to create a system in which the qubits can be controlled individually.

Yelin admits that her work can sometimes seem supernatural to non-specialists, but she says she wouldn’t have it any other way.

“On first glance, these interactions of light and particles looks like magic,” she says. “These polar are the pinnacle of quantum optics.”

Explore further: Quantum physics just got less complicated

More information: Journal paper: pra.aps.org/abstract/PRA/v81/i3/e030301

Related Stories

Basic quantum computing circuit built

Feb 25, 2010

(PhysOrg.com) -- Exerting delicate control over a pair of atoms within a mere seven-millionths-of-a-second window of opportunity, physicists at the University of Wisconsin-Madison created an atomic circuit that may help quantum ...

Discovery could pave the way for quantum computing

Mar 18, 2010

(PhysOrg.com) -- Two experimental systems at the forefront of modern physics research -- a single trapped ion and a quantum atomic gas -- have been combined for the first time by researchers at Cambridge. ...

12-qubits reached in quantum information quest

May 08, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed ...

'Self-correcting' gates advance quantum computing

Mar 12, 2009

(PhysOrg.com) -- Two Dartmouth researchers have found a way to develop more robust “quantum gates,” which are the elementary building blocks of quantum circuits. Quantum circuits, someday, will be used ...

Creating a quantum gas

Feb 01, 2010

(PhysOrg.com) -- "One of the many reasons people study ultracold gases is for their potential as model quantum systems," Deborah Jin tells PhysOrg.com. "There is a need to model quantum many-body systems because a lot of ...

Recommended for you

Quantum physics just got less complicated

Dec 19, 2014

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.