Scientist's Award Allows Her To Probe the Earth's Mantle

Jun 11, 2010

(PhysOrg.com) -- Sandwiched between the liquid iron outer core and the thin rocky crust we live on, the Earth's mantle is more than 1,800 miles thick, and comprises more than three-quarters of the planet's volume and nearly two-thirds of its mass. Yet surprisingly, scientists don't know exactly what it's made of.

Now Kanani Lee, an assistant professor in the Department of Geology and Geophysics, has secured a CAREER Award — the National Science Foundation's most prestigious honor for junior faculty who excel at integrating research with education — to help her find out.

Lee studies the interior of the Earth by investigating the properties of different materials at extremely and pressures. Using a vise-like device that crushes samples between diamonds to more than one million times the ambient pressure at the surface of the Earth, she then heats the samples to thousands of degrees Kelvin using an , recreating the conditions found thousands of miles below the surface.

By subjecting different mineral compounds to these , Lee aims to learn more about which minerals are present in the deep mantle and might have resulted in the rock samples that are spewed up by volcanic eruptions.

"These rare, essentially unmelted rocks are the only examples we have from the mantle," Lee says, noting that the crust, which is 20 to 30 miles thick, is too deep for drilling.

Geologists have some guesses about what the Earth's mantle is made of. They know it involves a combination of magnesium, iron, silicon and oxygen — the most simple mixture of which is a compound that geologists call "pyrolite" — but the exact remains elusive.

Seismologists offer a piece of the puzzle, providing models of mantle density based on how quickly or slowly seismic waves, caused by earthquakes, travel through the rocky layer. But pyrolite isn't dense enough to match up exactly with those seismological models, which scientists believe to be accurate over long distances, Lee says, so there must be something else going on. For instance, there are other elements involved that have been mostly ignored in compositional models, Lee says, such as calcium, aluminum and sodium, which could change the density of the mantle mineral mixture. Or perhaps scientists are wrong about the temperatures they think exist in the deepest layers, she notes.

Whatever the missing piece, uncovering the composition of the Earth's mantle would tell scientists a lot about how our planet formed and evolved over time, and could even shed light on the formation of other planets in our solar system and beyond.

"This is a very fundamental question that we should know the answer to," Lee says. "The chemical makeup of the mantle is crucial for understanding the thermal evolution of the Earth — how it cooled and evolved after it formed about 4.5 billion years ago — as well as how the continents grew and how the oceans and the atmosphere were created."

In addition to the research, Lee also has plans for education and outreach — one of the requirements for CAREER Award grants. Inspired by her husband, a comic book illustrator, Lee hopes to produce a short comic book about earth science for middle school students in New Haven, which would also be available online for other teachers and the general public.

Explore further: NASA provides double vision on Typhoon Matmo

add to favorites email to friend print save as pdf

Related Stories

The Earth's hidden weakness

May 28, 2010

(PhysOrg.com) -- Three thousand kilometres beneath our feet, the Earth's solid rock gives way to the swirling liquid iron of the outer core.

An Inexhaustible Source of Energy from Methane in Deep Earth

Sep 15, 2004

Untapped reserves of methane, the main component in natural gas, may be found deep in Earth’s crust, according to a recently released report in the Proceedings of the National Academy of Sciences of the United States of America ...

Probing Question: What heats the earth's core?

Mar 30, 2006

Although we crust-dwellers walk on nice cool ground, underneath our feet the Earth is a pretty hot place. Enough heat emanates from the planet's interior to make 200 cups of piping hot coffee per hour for each ...

Recommended for you

Jeju Island is a live volcano, study reveals

20 hours ago

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral ...

Has Antarctic sea ice expansion been overestimated?

21 hours ago

New research suggests that Antarctic sea ice may not be expanding as fast as previously thought. A team of scientists say much of the increase measured for Southern Hemisphere sea ice could be due to a processing ...

User comments : 0