New shortcut to cell growth

Jun 08, 2010

People have them, cats have them and whales have some, too. Neurons, those interlinked nerve cells that carry sensations including pain, stretch from our spinal cords to the tips of our toes, paws or fins. According to a new study published in the journal Cell, scientists from the Harvard Medical School, the University of Montreal and the Dana-Farber Cancer Institute have found a new way by which nerve cells relay information that tell them to grow from millimeters to meters in length.

In other words, the researchers found a new signaling pathway that charters the course for cell progression to allow their growth. The team made an intriguing connection between nerve cells and a receptor called DCC (Deleted in Colorectal ). The discovery means cells perform functions in unimagined ways - challenging previous views on how cells respond to their environment - that could prove beneficial in cell growth following or detrimental in diseases such as cancer.

"We found an alternate way that helps respond quickly and locally," says co-author Philippe P. Roux, a professor of pathology and cell biology and a researcher at the University of Montreal Institute for Research in Immunology and Cancer (IRIC). "This is just the beginning, since our findings suggest that more cellular receptors may function in the same way."

Dr. Roux, who is also Canada Research Chair in Signal Transduction and , says the study could potentially open new treatment avenues: "We can envisage manipulating this alternate mechanism to make cells respond locally to their environment. Our findings mean that scientists must consider a new way that cells organize themselves to perform essential functions."

Explore further: New class of insecticides offers safer, more targeted mosquito control

More information: The article, "Transmembrane Receptor DCC Associates with Protein Synthesis Machinery and Regulates Translation," is published in the journal Cell

Related Stories

Milestone in the regeneration of brain cells

Aug 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Scientists produce neurons from human skin

Feb 22, 2007

Scientists from Université Laval’s Faculty of Medicine have succeeded in producing neurons in vitro using stem cells extracted from adult human skin. This is the first time such an advanced state of nerve cell differentiation ...

Recommended for you

The vital question: Why is life the way it is?

17 hours ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

Food poisoning: New detection method for bacterial toxin

17 hours ago

The Bacillus cereus bacteria is one of the potential causes of food poisoning. Indeed, a recent study in Analytical and Bioanalytical Chemistry shows that this versatile pathogen produces 19 different varian ...

Detailing heterochromatin formation at the onset of life

18 hours ago

Antoine Peters and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) have elucidated the mechanisms controlling the packaging of chromatin in the early embryo. They have identified ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.