Aquatic life declines at early stages of urban development

Jun 03, 2010

The number of native fish and aquatic insects, especially those that are pollution sensitive, declines in urban and suburban streams at low levels of development — levels often considered protective for stream communities, according to a new study by the U.S. Geological Survey.

"When the area of driveways, parking lots, streets and other impervious cover reaches 10 percent of a watershed area, many types of pollution sensitive aquatic insects decline by as much as one third, compared to streams in undeveloped forested watersheds," said Tom Cuffney, USGS biologist. "We learned that there is no 'safezone,' meaning that even minimal or early stages of development can negatively affect aquatic life in urban streams."

As a watershed becomes developed, the amount of pavement, sidewalks and other types of urban land cover increases. During storms, water is rapidly transported over these urban surfaces to streams. The rapid rise and fall of stream flow and changes in temperature can be detrimental to fish and aquatic insects. Stormwater from urban development can also contain fertilizers and insecticides used along roads and on lawns, parks and golf courses.

"Stream protection and management is a top priority of state and local officials, and these findings remind us of the unintended consequences that development can have on our aquatic resources," said Tom Schueler, Chesapeake Stormwater Network coordinator. "The information has been useful in helping us to predict and manage the future impacts of urban development on streams and reinforces the importance of having green infrastructure to control stormwater runoff and protect aquatic life."

USGS studies examine the effects of urbanization on algae, aquatic insects, fish, habitat and chemistry in urban streams in nine metropolitan areas across the country: Boston, Mass.; Raleigh, N.C.; Atlanta, Ga.; Birmingham, Ala.; Milwaukee-Green Bay, Wis.; Denver, Colo.; Dallas-Fort Worth, Texas; Salt Lake City, Utah; and Portland, Ore.

These USGS studies also show that land cover prior to urbanization can affect how aquatic insects and fish respond to urbanization. For example, aquatic communities in urban streams in Denver, Dallas-Fort Worth and Milwaukee did not decline in response to urbanization because the aquatic communities were already degraded by previous agricultural land-use activities. In contrast, aquatic communities declined in response to urbanization in metropolitan areas where forested land was converted to urban land, areas such as Boston and Atlanta.

Comparisons among the nine areas show that not all urban streams respond exactly the same. This is mostly because stream quality and aquatic health reflect a complex combination of land and chemical use, land and storm-water management, population density and watershed development, and natural features, such as soils, hydrology, and climate.

Explore further: Coal-rich Poland ready to block EU climate deal

More information: http://www.chesapeakestormwater.net/

add to favorites email to friend print save as pdf

Related Stories

EPA's stormwater program needs a significant overhaul

Oct 15, 2008

Radical changes to the U.S. Environmental Protection Agency's stormwater program are necessary to reverse degradation of fresh water resources and ensure progress toward the Clean Water Act's goal of "fishable and swimmable" ...

Recommended for you

Coal-rich Poland ready to block EU climate deal

28 minutes ago

European Union leaders meeting in Brussels to set their new greenhouse gas emissions plan are facing staunch opposition from coal-reliant Poland and other East European countries who say their economies would ...

EU leaders seek last-minute climate deal

5 hours ago

European Union leaders came under pressure Thursday to strike a deal aimed at bolstering Brussels as a trailblazer in fighting global climate change as negotiations went down to the wire.

Research team studies 'regime shifts' in ecosystems

7 hours ago

The prehistory of major ecological shifts spanning multiple millennia can be read in the fine print of microscopic algae, according to a new study led by researchers at the University of Nebraska-Lincoln.

User comments : 0