Uncovering the mystery of a major threat to wheat

Jun 01, 2010

Agricultural Research Service (ARS) scientists have solved a longstanding mystery as to why a pathogen that threatens the world's wheat supply can be so adaptable, diverse and virulent. It is because the fungus that causes the wheat disease called stripe rust may use sexual recombination to adapt to resistant varieties of wheat.

ARS plant pathologist Yue Jin and his colleagues Les Szabo and Marty Carson at the agency's Cereal Disease Laboratory at St. Paul, Minn., have shown for the first time that stripe rust, caused by Puccinia striiformis, is capable of sexually reproducing on the leaves of an alternate host called barberry, a common ornamental. The fungus also goes through asexual mutation. But sexual recombination offers an advantage because it promotes rapid reshuffling of virulence gene combinations and produces a genetic mix more likely to pass along traits that improve the chances for survival.

Barberry (Berberis spp) is already controlled in areas where is threatened by , caused by another . But the work by the ARS team is expected to lead to better control of barberry in areas like the Pacific Northwest, where cool temperatures during most of the wheat growing season make stripe rust a particular threat.

The researchers suspended wheat straw infected with the stripe rust pathogen over barberry plants and found that from the wheat infected the barberry. They also took infected barberry leaves, treated them to promote the release of spores, and exposed them to wheat. Tests confirmed that the wheat plants were infected within about 10 days.

The researchers began the study last year after finding infected leaves on barberry plants at two sites on the University of Minnesota campus. They initially thought the symptoms were a sign that the stem rust pathogen had overcome the resistance commonly found in U.S. varieties of barberry.

Instead, they found barberry serving as a sexual or "alternate" host for stripe rust. When the overwintering spores of the stripe rust fungus germinate in the spring, they produce spores that reach barberry leaves, forming structures on the top of the leaves that allow mating between races or strains of the fungus. Spores resulting from this mating can, in turn, infect wheat.

Explore further: Research challenges understanding of biodiversity crisis

More information: The results were recently published in Phytopathology.

Provided by United States Department of Agriculture

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Elusive rust resistance genes located

Dec 06, 2006

The discovery of a DNA marker for two key rust resistance genes is enabling plant breeders around the world to breed more effective rust resistant wheat varieties.

Dangerous wheat disease jumps Red Sea

Jan 16, 2007

A new form of stem rust, a virulent wheat disease, has jumped from eastern Africa and is now infecting wheat in Yemen in the Arabian Peninsula.

Gene to reduce wheat yield losses

Feb 19, 2009

A new gene that provides resistance to a fungal disease responsible for millions of hectares of lost wheat yield has been discovered by scientists from the US and Israel.

Scientists fight stem rust UG99 before it becomes a threat

Nov 18, 2008

(PhysOrg.com) -- Wheat breeders and plant pathologists at Montana State University are part of a global effort to develop varieties of wheat resistant to a new fungus. UG99, a stem rust strain that was first discovered in ...

Researchers find rust resistance genes in wild grasses

Oct 21, 2008

(PhysOrg.com) -- University of Adelaide researchers have identified new sources of stem and leaf rust resistance in wild grass relatives of wheat sourced mostly from the 'fertile crescent' of the Middle East.

New wheat disease could spread faster than expected

Mar 25, 2009

Both plant and human diseases that can travel with the wind have the potential to spread far more rapidly than has been understood, according to a new study, in findings that pose serious concerns not only for some human ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

Apr 18, 2014

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories