Gene to reduce wheat yield losses

February 19, 2009

A new gene that provides resistance to a fungal disease responsible for millions of hectares of lost wheat yield has been discovered by scientists from the US and Israel.

"This is the first step to achieving more durable resistance to a devastating disease in wheat," said Dr Cristobal Uauy, co-author of the report, recently appointed to the John Innes Centre in Norwich.

Resistance to stripe rust has previously been achieved using genes that are specific to single races of the disease. Unfortunately, each of these genes has had limited durability in the field because the pathogen has mutated to overcome them.

In the paper to be published in Science Express tomorrow, the international team of scientists report finding a novel type of gene in wild wheat that is absent in modern pasta and bread wheat varieties.

"This gene makes wheat more resistant to all stripe rust fungus races tested so far," said Dr Uauy.

The gene confers resistance at relatively high temperatures, and a focus of Dr Cristobal Uauy's research at JIC will be to test how effective it is in UK-adapted varieties.

Bread wheat provides about 20 per cent of the calories eaten by humankind and is the UK's biggest crop export.

Dr Uauy has recently been appointed at JIC. He will lead a research collaboration with the National Institute of Agricultural Botany (NIAB) designed to deliver practical benefits to agriculture. Research results will be made available to breeders, so they can be deployed into modern varieties for farmers.

Dr Uauy will use the latest genomic techniques to find genes in wheat that directly affect yield and nutritional content.

Yield is a complex trait influenced by many environmental and genetic factors. It was thought that the genetic component determining yield was made up of many different genes each exerting a small influence, but recent work led by the John Innes Centre has challenged this view. Several stretches of the genome, known as quantitative trail loci (QTLs) have been identified that exert large effects on yield, in different environments. Dr Uauy will lead the effort to find the precise genetic basis for their effect on yield.

Source: Norwich BioScience Institutes

Explore further: Genetic discovery another tool in battle against wheat pests

Related Stories

Genetic discovery another tool in battle against wheat pests

November 3, 2017

Greenbug and Hessian fly infestations can significantly reduce wheat yield and quality in Texas and worldwide. Breeding for resistance to these two pests using marker-assisted selection just got a new tool from a Texas A&M ...

Flour power to boost food security

October 31, 2017

The discovery of genes that determine the yield of flour from wheat could increase milling yield, boosting food security and producing a healthier flour.

'Golden' potato delivers bounty of vitamins A and E

November 8, 2017

An experimental "golden" potato could hold the power to prevent disease and death in developing countries where residents rely heavily upon the starchy food for sustenance, new research suggests.

Researchers identify gene to help hybrid wheat breeding

October 11, 2017

Australian researchers at the University of Adelaide have identified a naturally occurring wheat gene that, when turned off, eliminates self-pollination but still allows cross-pollination - opening the way for breeding high-yielding ...

Unraveling what genomics can do

September 29, 2017

It took nearly 10,000 years of breeding to take maize from a tropical crop with thumb-sized ears to the high-yielding Midwest crop of today. But in just the next decade, new corn varieties will likely have higher levels of ...

Recommended for you

New paper answers causation conundrum

November 17, 2017

In a new paper published in a special issue of the Philosophical Transactions of the Royal Society A, SFI Professor Jessica Flack offers a practical answer to one of the most significant, and most confused questions in evolutionary ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.