Discovery may lead to safer drinking water, cheaper medicine

May 26, 2010

A discovery that may pave the way to helping reduce health hazards such as E. coli in water could also make chemicals and drugs such as insulin cheaper to produce and their production more environmentally friendly.

By creating a three-dimensional model, Queen's University biochemistry professor Zongchao Jia and post-doctoral student Jimin Zheng discovered exactly how the AceK protein acts as a switch in some bacteria to bypass the energy-producing cycle that allows bacteria like E. coli and salmonella to go into a survival mode and adapt to low-nutrient environments, such as water.

The unique feature of this discovery is that the switching on and off take place in the same location of the protein. Normally these two opposing activities would happen in two different 'active sites'.

"From a point of view, this is unique and has never been discovered anywhere else," says Professor Jia.

The discovery opens the door for scientists to identify a molecule that can keep the bypass switch from turning on so bacteria will die in water. As a result, drinking water would be cleaner and the incident of water , such as the Walkerton tragedy, could be reduced.

"While other organisms cannot survive without nutrients, the bypass controlled by AceK allows the bacteria to live and cause ," says Professor Jia.

Conversely, discovering a molecule to keep the bypass switch turned on could produce a supply of the bacteria biotechnology companies use to produce compounds, such as . Instead of using glucose in the fermenting process, companies could use less nutritional and cheaper acetate.

The cost difference would be tremendous and the process would produce less making the process much more environmentally friendly.

"So we haven't found a cure to stop diseases like E. coli water contamination, but we've provided a template for people to design a molecule that will disable its ability to survive in water," says Professor Jia. "It's like we have discovered how a lock works and now all we need is to design a key."

Explore further: Structure of sodium channels different than previously believed

add to favorites email to friend print save as pdf

Related Stories

Real-world proof of hand washing's effectiveness

May 05, 2010

Scientists are reporting dramatic new real-world evidence supporting the idea that hand washing can prevent the spread of water-borne disease. It appears in a new study showing a connection between fecal bacteria ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

MikeLisanke
not rated yet May 30, 2010
Significant discovery, congratulations!

More news stories

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...