Pollution dispersion research aids understanding of 2002 break-up of Antarctic ozone hole

May 24, 2010

The eruption of the volcano in Iceland has drawn attention to air flow patterns, as airlines lost millions of dollars and travelers remained stranded for days to weeks, as particles from the natural disaster traveled over Europe, forcing closures of major airports.

The flow of particles, although seemingly random, can be characterized more effectively, according to work done by Virginia Tech's Shane Ross of the engineering science and mechanics (ESM) department and his colleague Francois Lekien of École Polytechnique, Université Libre de Bruxelles, Belgium, who reported their findings in the publication Chaos.

Their research "will aid scientists and engineers in understanding and in controlling this type of global-scale phenomena, such as pollution dispersion in the atmosphere and the ocean, and large-scale transport of biological organisms, including airborne plant pathogens and respiratory disease agents," said Ishwar Puri, head of the ESM department at Virginia Tech.

For example, the current British Petroleum oil spill in the Gulf of Mexico, might be modeled using Ross and Lekien's findings to provide greater insight into how the particles might be dragged into the Gulf of Mexico's Loop Current.

In explaining how they conducted their research on the flow of particles, Ross and Lekien said they employed existing scientific principles of Lagrangian coherent structures, which reveals the separation of the atmosphere into dynamically distinct regions, to investigate the shapes of geophysical flow patterns.

They used the 2002 discovery of the Antarctic Hole in their work because they viewed it as a "prototype atmospheric event" allowing for their studies on topological divisions on the mixing and transport of atmospheric tracers.

As the media worldwide broadly publicized the finding of the Antarctic hole, it became the focus of the atmospheric science community. As Ross described the event, when the split in two, allowing one of its fragments or regions to reassert its position over the Antarctic Pole while the other one spread into the mid-latitude regions, it implied "a sudden stratospheric warming."

This type of global warming occurs in roughly half of all winters in the Arctic. The scientific explanation, Ross said, is "they are produced by the dynamic momentum force resulting from the breaking and dissipation of planetary-scale Rossby waves in the stratosphere."

This phenomenon had never been observed in the Antarctic prior to 2002, according to reliable records that go back some 50 years. Consequently, Ross and Lekien labeled it a "prototype" of rare atmospheric events.

Reviewing data from the event, they were able to determine that an isolated "blob of air" was slowly rotating over Antarctica. Lagrangian coherent structures, some which repel nearby air and some that attract it, formed inside the vortex. The vortex pinched off, sending the northwestern part of the ozone hole off into the mid latitude range while the southwestern portion returned to its regular position over the South Pole.

Consequently, they write, when there is more than one vortex flow on a sphere, such as the planet Earth, "complicated spatial structures can arise and evolve, such as the polar vortex split." They were able to model this event, capturing some of its dynamic features.

"This model is very relevant both in atmospheric and oceanographic settings when one considers large-scale phenomena where the spatial geometry of the Earth's surface becomes important. The full spherical geometry, as opposed to tangent plane approximations, is particularly important when considering global streamline patterns generated by a given vorticity distribution…These patterns, in turn, provide the dynamical templates by which one can begin to understand the chaotic advection of in a vortex-dominated flow."

Explore further: Suomi NPP satellite spots birth of Tropical Cyclone Kate

More information: http://chaos.aip.org/chaoeh/v20/i1

Related Stories

2008 ozone hole larger than last year

Oct 07, 2008

The 2008 ozone hole – a thinning in the ozone layer over Antarctica – is larger both in size and ozone loss than 2007 but is not as large as 2006.

Study Finds Clock Ticking Slower On Ozone Hole Recovery

Jun 30, 2006

The Antarctic ozone hole's recovery is running late. According to a new NASA study, the full return of the protective ozone over the South Pole will take nearly 20 years longer than scientists previously expected.

Scientists celebrate 25th anniversary of ozone hole discovery

May 05, 2010

An international group of scientists will gather at the University of Cambridge on Friday 7 May 2010 to celebrate the 25th anniversary of the discovery of the hole in the ozone layer, one of the most dramatic scientific findings ...

Recommended for you

Suomi NPP satellite spots birth of Tropical Cyclone Kate

18 hours ago

The tropical low pressure area previously known as System 95S organized and strengthened into Tropical Cyclone Kate on Dec. 24 and the Cocos Keeling Islands are expected to feel its effects on Dec. 25 and ...

NASA looks at some severe holiday weather from space

18 hours ago

Severe weather in the form of tornadoes is not something people expect on Christmas week but a storm system on Dec. 23 brought tornadoes to Mississippi, Georgia and Louisiana. As the storm moved, NASA's RapidScat ...

NASA satellite spots Christmas

Dec 24, 2014

If you're looking for Christmas NASA's Aqua satellite spotted it in the Southern Indian Ocean. It's a coral atoll (a ring-shaped reef, island, or chain of islands made up of coral) in the northern Line Islands ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

LKD
not rated yet May 25, 2010
quote: "Their research "will aid scientists and engineers in understanding and in controlling this type of global-scale phenomena"

You can't be serious. Controlling? Comprehending, yes, very important, but controlling?! Do you read too much science fiction? You can't control the atmosphere with our technology.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.