Between the genes -- a making sense of genomic 'dark matter'

May 18, 2010

A group of University of Toronto scientists have uncovered some of the secrets behind what molecular biologists call "dark matter" transcripts. The findings will be published next week in the online, open access journal PLoS Biology.

The term "dark matter" refers to the genomic output that does not originate from known , arising instead from regions that were once thought of as nothing more than "." When genetic signals, namely RNA transcripts, were discovered coming from these areas, many believed there was a whole new mystery to solve, and that much more was going on than originally expected.

However, a new study, led by Postdoctoral Fellow Harm van Bakel and Prof. Timothy Hughes from the Banting and Best Department of Medical Research and the Terrence Donnelly Centre for Cellular and Biomolecular Research, indicates that most of these signals are likely to be by-products of signals from already known genes. Most of the other signals, the research indicates, are more consistent with background noise than meaningful signals.

Part of the mystery came from the methodology used. Many original reports of dark matter signals used "tiling microarrays," which these researchers determined was creating many false positives. By using a recently available method of sequencing very large numbers of transcripts, they were able to determine that unexplained dark matter only accounts for 2% of the total transcripts, much less than originally believed. Of that 2%, most are very close to known genes, indicating that they are likely to be part of the gene itself.

"The fact that most dark matter transcripts could be linked to known genes suggests that they are not signals emerging from a hidden universe within the genome," says van Bakel. "Though it is too early to exclude some functional role, the dark matter transcripts may primarily be by-products of normal ."

"Given the size of the human , it's important to know where to focus our attention," says van Bakel. "Up until now, we had no way of knowing if we were missing out on some key biological information. This discovery allows us to zero in on what is really important."

Explore further: The origin of the language of life

More information: van Bakel H, Nislow C, Blencowe BJ, Hughes TR (2010) Most ''Dark Matter'' Transcripts Are Associated With Known Genes. PLoS Biol 8(5): e1000371. doi:10.1371/journal.pbio.1000371

Related Stories

Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Unravelling new complexity in the genome

Aug 13, 2007

A major surprise emerging from genome sequencing projects is that humans have a comparable number of protein-coding genes as significantly less complex organisms such as the minute nematode worm Caenorhabditis elegans. Clearly ...

Study sheds light on dark matter

Feb 06, 2006

British astronomers say they have, for the first time, determined some of the physical characteristics of dark matter.

Exploring the secrets of dark matter

Feb 18, 2010

Even the biggest Star Trek fan would probably have trouble understanding the technical details of the research done by Queen's University Particle Astrophysics Professor Wolfgang Rau of Kingston, Canada.

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.