A warm sensor maintains skin barrier

May 14, 2010

Japanese research group led by Prof. Makoto Tominaga and Dr. Takaaki Sokabe (National Institute for Physiological Sciences: NIPS) found that TRPV4 ion channel in skin keratinocytes is important for formation and maintenance of barrier function to prevent dehydration. Their finding was reported in the Journal of Biological Chemistry.

TRPV4 is one of the temperature-sensitive Ca2+-permeable channels, namely "thermoTRPs". It is expressed in skin, acting as a warm sensor (>27oC) to choose preferred environmental temperatures in mammals. The research group sought the alternative function of TRPV4, since skin keratinocytes express another thermoTRP named TRPV3, which also functions as a warm sensor.

TRPV4 was found to interact with b-catenin, an adaptor protein between and E-cadherin in cell-cell junction complex. When TRPV4 was genetically removed from keratinocytes, Ca2+-induced cell-cell junction formation was delayed and immature, resulting in leaky junctions. Consistently, intercellular junction-dependent skin barrier in TRPV4-deficient mice became weak (leaky intercellular pathway) compared to wild-type mice. Interestingly, these phenotypes were TRPV4-specific, but not TRPV3-dependent.

Dr. Sokabe said, "TRPV4 may utilize to provide Ca2+ for cell-cell junction complexes to reinforce their tightness. For instance, dried skin in cold seasons or regions could be due to low activity of TRPV4 caused by low skin temperature. Development of chemicals modulating TRPV4 activity would be useful for barrier repair of damaged skin."

Explore further: Chemical biologists find new halogenation enzyme

Provided by National Institute for Physiological Sciences

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Bladder cells feel stretch

Aug 07, 2009

Japanese research group led by Prof. Makoto Tominaga and Dr. Takaaki Sokabe (National Institute for Physiological Sciences: NIPS), and Prof. Masayuki Takeda, Dr. Isao Araki and Dr. Tsutomu Mochizuki (Yamanashi Univ.), found ...

ATP is a key to feel warm temperature

Oct 08, 2009

A Japanese research group led by Prof. Makoto Tominaga and Dr. Sravan Mandadi (National Institute for Physiological Sciences: NIPS) found that ATP plays a key role in transmitting temperature information from skin keratinocytes ...

Newly Discovered Gene Mutation Linked to Nerve Diseases

Dec 28, 2009

(PhysOrg.com) -- Researchers from the Northwestern University Feinberg School of Medicine have identified mutations in the gene for TRPV4 that cause two related degenerative motor nerve disorders, scapuloperoneal spinal muscular ...

Painful heat sensed by 'painless' in flies

Sep 30, 2008

Japanese research group led by Prof Makoto Tominaga and Dr Takaaki Sokabe, National Institute for Physiological Sciences (NIPS), Japan, found that a small fly, drosophila, has a receptor for noxious heat. The research group ...

Recommended for you

Chemical biologists find new halogenation enzyme

4 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

10 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

10 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

12 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen ļ¬brils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0