A new approach that saves eyesight and lives in the developing world

May 03, 2010

Two Agricultural Research Service (ARS) scientists are part of an international team that has found a way to boost the nutritional value of corn. This has the potential to reduce the number of children in developing countries who lose their eyesight, become ill or die each year because of vitamin A deficiencies.

Corn contains carotenoids, some of which the body can convert to vitamin A. Beta-carotene is the best vitamin A precursor, but only a very small percentage of corn varieties have naturally high beta-carotene levels. In Africa and other developing regions, corn is a major staple and hundreds of thousands of children become blind, develop weakened immune systems and die because of diets based largely on corn that lacks sufficient beta-carotene.

Marilyn Warburton, a geneticist with the ARS Corn Host Plant Resistance Research Unit in Starkville, Miss.; Edward Buckler, a geneticist in the ARS Robert W. Holley Center for Agriculture and Health in Ithaca, N.Y., and their colleagues published results identifying genetic sequences linked to higher beta-carotene levels in corn and demonstrating an inexpensive and fast way to identify that will produce even higher levels. The report, recently published in , is considered a breakthrough in nutritional plant breeding.

The project was funded in part by the National Science Foundation and included major scientific contributions from Torbert Rocheford of Purdue University and Jianbing Yan of the International Maize and Wheat Improvement Center in Mexico.

In their study, the researchers surveyed the genetic sequences of corn from around the world through association mapping, a method made possible by recent breakthroughs that accelerate the genetic profiling of crops.

The genetic survey revealed natural variations in one linked to higher beta-carotene levels. These variations interacted with a gene identified previously, and the best variations of the two genes together led to an 18-fold increase in beta-carotene, according to Warburton. The mapping survey identified molecular markers that breeders can use to incorporate the desired gene variants into for the developing world. Warburton and Yan are now working with breeders oversees to train them on use of the new techniques.

Explore further: Improving the productivity of tropical potato cultivation

Provided by United States Department of Agriculture

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Increase of beta-carotene in corn improves human health

Mar 22, 2010

(PhysOrg.com) -- A Michigan State University researcher is among a team of scientists that have uncovered the mechanism by which the amount of beta-carotene, or provitamin A, is increased in corn, a finding that can help ...

Genetic link to vitamin A deficiency

Nov 17, 2009

(PhysOrg.com) -- Almost half of UK women may be lacking an important source of vitamin A due to a previously undiscovered genetic variation, scientists at Newcastle University have found.

Recommended for you

Building better soybeans for a hot, dry, hungry world

17 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

17 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...