Tiny Particles May Help Surgeons By Marking Brain Tumors

Apr 29, 2010 by Jessica Orwig

(PhysOrg.com) -- Researchers have developed a way to enhance how brain tumors appear in MRI scans and during surgery, making the tumors easier for surgeons to identify and remove.

Scientists at Ohio State University are experimenting with different nanoparticles that they hope may one day be injected into the blood of patients and help surgeons remove lethal known as glioblastomas.

In the journal , researchers reported that they have manufactured a small particle called a nanocomposite that is both magnetic and fluorescent. These nanocomposites measure less than twenty in size (a nanometer is one billionth of a meter). One sheet of paper, for example, is about 100,000 nanometers thick.

"Our strategy is combining two particles that contain different properties to make one particle with multiple properties," explained Jessica Winter, assistant professor in chemical and biomolecular engineering and biomedical engineering at Ohio State.

The magnetic nanoparticles emphasize color contrasts within MRIs, allowing doctors to see potential or existing cancerous tumors before surgery. The fluorescent can change the color that the tumor appears in the brain when seen under a special light.

Neurological surgeons could benefit from a multi-functional particle that would allow them to better see the tumor with an MRI before surgery, and then see it physically during surgery, Winter said.

"We're trying to develop a single nanocomposite that's magnetic - so you can do preoperative MRI - and that's fluorescent - so that when neurological surgeons go into surgery, they can shine a light on the tumor and it will glow a specific color such as green, for example. Then, the surgeon can simply remove all of the green," Winter said.

"With traditional magnetic contrasting agents, you'll get an MRI, but you won't see anything during surgery," she added.

Winter's study provided convincing proof that a particle with dual properties can be formed. However, these multi-functional particles can't be used for animal or human testing because the fluorescent particle, cadmium telluride, is toxic.

"We're currently working on an alternative fluorescent particle which is composed of carbon. This will eliminate the complications that arise with ingesting the cadmium telluride particles," Winter said.

Patients with a specific form of deadly brain tumor, , could benefit from Winter's work. Glioblastomas are usually located in the temporal, or frontal lobe of the brain, and tumors located there are difficult to see and remove.

Combining the two particles could provide doctors with help both before and during the surgery to remove a brain tumor, Winter said.

One of the successes in creating the new particle was how they did it, Winter said. It is normally difficult to combine particles like these, a process known as doping.

The Ohio State researchers pursued an approach which had not been attempted before. They chose to bind their fluorescent particle on top of their magnetic particle at extremely high temperatures.

The key is that our synthesis is done at pretty high temperatures - about 350 degrees Celsius (around 660 degrees Fahrenheit)," Winter explained. "The synthesis was unexpected, but cool at the same time, and we were excited when we saw what we got."

The primary neurological surgeon that collaborates with Winter and her team, an assistant professor with the Department of Neurological Surgery, Atom Sarkar, hopes to test the approach on animals at some point. But first they have to produce a particle that contains no toxic ingredients. If results continue to be encouraging, Winter is optimistic that similar multifunctional could become an innovative part of neurological surgery within the next five years.

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

More information: iopscience.iop.org/0957-4484/

Related Stories

Fluorescent probes light up cancerous tumors

Feb 16, 2010

Building on his Nobel Prize-winning work creating fluorescent proteins that light up the inner workings of cells, a team of researchers led by Howard Hughes Medical Institute investigator Roger Tsien, PhD, professor of pharmacology, ...

Fluorescent cancer cells to guide brain surgeons

Apr 03, 2009

Gliomas are malignant brain tumors that arise from glial (supporting) cells of the brain. Gliomas are often resistant to chemotherapy. These tumors grow fine extensions that infiltrate normal brain tissue and, in addition, ...

New Nanoparticle Structure Boosts Magnetic Properties

Dec 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug ...

Tracking new cancer-killing particles with MRI

Dec 14, 2009

Researchers at Rice University and Baylor College of Medicine (BCM) have created a single nanoparticle that can be tracked in real time with MRI as it homes in on cancer cells, tags them with a fluorescent ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

18 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.