Sustainable biofuels from forests, grasslands and rangelands

Apr 28, 2010

The promise of switchgrass, the challenges for forests and the costs of corn-based ethanol production: Ecological scientists review the many factors surrounding biofuel crop production and its implications on ecosystem health in three new Biofuels and Sustainability Reports. Produced by the Ecological Society of America (ESA), the nation's largest organization of ecological scientists, and sponsored by the Energy Foundation, these reports explore the production and use of biofuels from an ecological perspective.

Biofuels are liquid fuels derived from biological materials, such as plant stems and stalks, vegetable oils, forest products or waste materials. The raw materials, called feedstock, can be grown specifically for fuel purposes or can be derived from existing sources such as agricultural residue or municipal garbage. Sustainable biofuels are based on production that does not negatively affect energy flow, nutrient cycles and ecosystem services.

There are many options currently being explored for biofuel production and the reports address the implications of producing biofuels from forests, grasslands, rangelands and agricultural systems and the likely effects on water, soil and the atmosphere.

Sustainable Biofuels from Forests

Marilyn Buford and Daniel Neary from the U.S. Forest Service outline the challenges surrounding the production of sustainable biofuels from woody biomass, including balancing energy demands with water production, wildlife habitats and in "Sustainable Biofuels from Forests: Meeting the Challenge."

Woody biomass from forests can be converted to biofuels, biobased products and biopower through thermochemical (heat and pressure converts woody biomass into alcohols and other chemicals), biochemical (woody biomass is broken down into sugars) and direct combustion methods. The researchers suggest that 334 million dry metric tons of forest wastes and residues could be produced each year on a sustainable basis in the U.S. These residues and wastes would come from logging activities, processing mills and pulp and paper production among other sources.

Grasslands, Rangelands and Agricultural Systems

In "Grasslands, Rangelands and Agricultural Systems," scientists Rob Mitchell, Linda Wallace, Wallace Wilhelm, Gary Varvel and Brian Wienhold discuss sustainable biofuel options in grasslands and rangelands that dominate the mid-region of the U.S. They specifically address recent interest from policymakers and energy producers in switchgrass for bioenergy, and the effects this perennial crop has on soil and water.

"Switchgrass has garnered a lot of attention as a potentially efficient, profitable and environmentally-friendly biofuel crop," says Rob Mitchell from the U.S. Department of Agriculture, Agricultural Research Service. "It is known for its environmental advantages on marginal cropland like reducing inputs, controlling erosion, sequestering carbon and enhancing wildlife habitat. But there is an array of factors to consider. For example, switchgrass roots run deeper than other crops, so deep soil samples are required to determine the exact amount of fertilizer to be applied to prevent nutrient run-off. Therefore, switchgrass, as with all biofuel crops, will require innovative and site-specific management practices in order to be economically and environmentally sustainable."

Growing Plants for Fuel

"Growing Plants for Fuel: Predicting Effects on Water, Soil and the Atmosphere," authored by Philip Robertson, Stephen Hamilton, Stephen Del Grosso and William Parton, reviews the trade-offs associated with gasoline blended with corn-based ethanol. They describe the consequences of this particular biofuel on the atmosphere, marine and freshwater ecosystems, wildlife habitats and on the area of land available for food production.

The researchers also discuss the potential benefits of cellulosic feedstocks, such as the woody biomass and switchgrass methods listed above, as alternative biofuel feedstocks that could avoid many of the downsides of grain-based biofuel crops, such as corn.

These three reports join an additional report published in January called "Biofuels: Implications for Land Use and Biodiversity." In that ESA report, scientists Virginia Dale, Keith Kline, John Wiens and Joseph Fargione review current research on biofuel production and its potential effects on ecosystems. They also analyze the social, economic and ecological challenges of production and the most effective routes to developing sustainable, renewable fuel alternatives.

Explore further: Study finds new links between number of duplicated genes and adaptation

More information: All four reports are available online at esa.org/biofuelsreports/

Provided by Ecological Society of America

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Beyond the corn field: Balancing fuel, food and biodiversity

Feb 16, 2010

The development of alternative fuel will greatly benefit the U.S., say scientists in an Energy Foundation-funded report published today by the Ecological Society of America (ESA), the nation's largest organization of ecological ...

Biofuels: More than just ethanol

Apr 05, 2007

As the United States looks to alternate fuel sources, ethanol has become one of the front runners. Farmers have begun planting corn in the hopes that its potential new use for corn will be a new income source. What many ...

Biofuels, like politics, are local

Feb 13, 2009

Field work and computer simulations in Michigan and Wisconsin are helping biofuels researchers understand the basics of getting home-grown energy from the field to consumers. Preliminary results presented today suggest that ...

Study finds concerns with biofuels

Mar 31, 2008

Biofuels are widely considered one of the most promising sources of renewable energy by policy makers and environmentalists alike. However, unless principles and standards for production are developed and implemented, certain ...

Energy crops impact environmental quality

Apr 04, 2010

Crop residues, perennial warm season grasses, and short-rotation woody crops are potential biomass sources for cellulosic ethanol production. While most research is focused on the conversion of cellulosic feeedstocks into ...

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

12 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

12 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

19 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.