Fermi maps an active galaxy's 'smokestack plumes'

Apr 01, 2010
Fermi's Large Area Telescope resolved high-energy gamma rays from an extended region around the active galaxy Centaurus A. The emission corresponds to million-light-year-wide radio-emitting gas thrown out by the galaxy's supersized black hole. This inset shows an optical/gamma-ray composite of the galaxy and its location on the Fermi one-year sky map. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory

If our eyes could see radio waves, the nearby galaxy Centaurus A (Cen A) would be one of the biggest and brightest objects in the sky, nearly 20 times the apparent size of a full moon. What we can't see when looking at the galaxy in visible light is that it lies nestled between a pair of giant radio-emitting gas plumes ejected by its supersized black hole. Each plume is nearly a million light-years long.

NASA's Fermi Gamma-Ray Space Telescope maps , radiation that typically packs 100 billion times the energy of radio waves. Nevertheless, and to the surprise of many astrophysicists, Cen A's plumes show up clearly in the satellite's first 10 months of data. The study appears in Thursday's edition of .

"This is something we've never seen before in gamma rays," said Teddy Cheung, a Fermi team member at the Naval Research Laboratory in Washington. "Not only do we see the extended radio lobes, but their gamma-ray output is more than ten times greater than their radio output." If gamma-ray telescopes had matured before their radio counterparts, astronomers would have instead classified Cen A as a "gamma-ray galaxy."

Also known as NGC 5128, Cen A is located about 12 million light-years away in the constellation Centaurus and is one of the first celestial radio sources identified with a galaxy. "A hallmark of radio galaxies is the presence of huge, double-lobed radio-emitting structures around otherwise normal-looking ," said Jürgen Knödlseder, a Fermi collaborator at the Center for the Study of in Toulouse, France. "Cen A is a textbook example."

Astronomers classify Cen A as an "active galaxy," a term applied to any galaxy whose central region exhibits strong emissions at many different wavelengths. "What powers these emissions is a well-fed black hole millions of times more massive than our sun," said Yasushi Fukazawa, a co-author of the study at Hiroshima University in Japan. "The black hole somehow diverts some of the matter falling toward it into two oppositely directed jets that stream away from the center."

Fueled by a black hole estimated at hundreds of millions of times the sun's mass, Cen A ejects magnetized particle jets moving near the speed of light. Over the course of tens of millions of years, these jets puffed out two giant bubbles filled with magnetic fields and energetic particles -- the radio lobes we now see. The arise as high-speed electrons spiral through the lobes' tangled magnetic fields.

The gamma-ray output from Cen A's lobes exceeds their radio output by more than ten times. High-energy gamma rays detected by Fermi's Large Area Telescope are depicted as purple in this gamma ray/optical composite of the galaxy. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory

But where do gamma rays -- the highest-energy form of light -- come from?

The entire universe is filled with low-energy radiation -- radio photons from the all-pervasive cosmic microwave background, as well as infrared and visible light from stars and galaxies. The presence of this radiation is the key to understanding Cen A's gamma rays.

"When one of these photons collides with a super-fast particle in the radio lobes, the photon receives such an energy boost, it becomes a gamma ray," explained co-author Lukasz Stawarz at the Japan Aerospace Exploration Agency in Sagamihara, Japan.

Although it sounds more like billiards than astrophysics, this process, called inverse Compton scattering, is a common way of making cosmic gamma rays. For Cen A, an especially important aspect is the case where photons from the cosmic microwave background ricochet off of the highest-energy particles in the radio lobes.

In dozens of active galaxies, this process has been shown to produce X-rays. But the Cen A study marks the first case where astronomers have solid evidence that microwave photons can be kicked up to gamma-ray energies.

Fermi cataloged hundreds of blazars and other types of active galaxies in its first year. Before its mission ends, that number may reach several thousand. But because Cen A is so close, so large and so vigorous, it may be the only active galaxy Fermi will view this way.

With Centaurus A, Fermi hit the jackpot.

Explore further: A sharp eye on Southern binary stars

Related Stories

Fermi telescope finds gamma-ray galaxy surprises

Jul 14, 2009

Back in June 1991, just before the launch of NASA's Compton Gamma-Ray Observatory, astronomers knew of gamma rays from exactly one galaxy beyond our own. To their surprise and delight, the satellite captured ...

Fermi sees brightest-ever blazar flare

Dec 09, 2009

(PhysOrg.com) -- A galaxy located billions of light-years away is commanding the attention of NASA's Fermi Gamma-ray Space Telescope and astronomers around the globe. Thanks to a series of flares that began ...

Chandra Shows Shocking Impact of Galaxy Jet

Apr 22, 2009

(PhysOrg.com) -- A survey by the Chandra X-ray observatory has revealed in detail, for the first time, the effects of a shock wave blasted through a galaxy by powerful jets of plasma emanating from a supermassive ...

VLBA locates superenergetic bursts near giant black hole

Jul 02, 2009

(PhysOrg.com) -- Using a worldwide combination of diverse telescopes, astronomers have discovered that a giant galaxy's bursts of very high energy gamma rays are coming from a region very close to the supermassive ...

Chandra Sheds Light on Galaxy Collision

Mar 29, 2007

Astronomers think that there are enormous black holes at the centers of most, if not all, galaxies. These black holes, which can be millions or even billions of times more massive than the Sun, can greatly ...

Recommended for you

A sharp eye on Southern binary stars

1 hour ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

1 hour ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

5 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

yyz
not rated yet Apr 02, 2010
At this level of resolution and sensitivity, nearby radio galaxies like M 87 and Fornax A should also exhibit extended gamma ray emission coincident with their radio jets.

More news stories

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Rosetta instrument commissioning continues

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...