Ashes to Ashes, Dust to Dust: Chandra/Spitzer Image

Mar 29, 2010
A composite image from NASA's Chandra (blue) and Spitzer (green and red-yellow) space telescopes shows the dusty remains of a collapsed star, a supernova remnant called G54.1+0.3. Image credit: NASA/CXC/JPL-Caltech/Harvard-Smithsonian CfA

(PhysOrg.com) -- A new image from NASA's Chandra and Spitzer space telescopes shows the dusty remains of a collapsed star. The dust is flying past and engulfing a nearby family of stars.

"Scientists think the stars in the image are part of a stellar cluster in which a exploded," said Tea Temim of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., who led the study. "The material ejected in the explosion is now blowing past these stars at high velocities."

The of G54.1+0.3 is online. It shows the Chandra X-ray Observatory data in blue, and data from the in green (shorter wavelength) and red-yellow (longer). The white source near the center of the image is a dense, rapidly rotating neutron star, or pulsar, left behind after a core-collapse supernova explosion. The pulsar generates a wind of high-energy particles -- seen in the Chandra data -- that expands into the surrounding environment, illuminating the material ejected in the supernova explosion.

The infrared shell that surrounds the pulsar wind is made up of gas and dust that condensed out of debris from the supernova. As the cold dust expands into the surroundings, it is heated and lit up by the stars in the cluster so that it is observable in infrared. The dust closest to the stars is the hottest and is seen glowing in yellow in the image. Some of the dust is also being heated by the expanding pulsar wind as it overtakes the material in the shell.

The unique environment into which this supernova exploded makes it possible for astronomers to observe the condensed dust from the supernova that is usually too cold to emit in infrared. Without the presence of the stellar cluster, it would not be possible to observe this dust until it becomes energized and heated by a shock wave from the supernova. However, the very action of such shock heating would destroy many of the smaller . In G54.1+0.3, astronomers are observing pristine dust before any such destruction.

G54.1+0.3 provides an exciting opportunity for astronomers to study the freshly formed supernova dust before it becomes altered and destroyed by shocks. The nature and quantity of dust produced in supernova explosions is a long-standing mystery, and G54.1+0.3 supplies an important piece to the puzzle.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

The Spitzer observations were made before the telescope ran out of its coolant in May 2009 and began its "warm" mission. NASA's Jet Propulsion Laboratory in Pasadena, Calif., manages Spitzer for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

Explore further: Computers beat brainpower when it comes to counting stars

Related Stories

Supernova remnant is an unusual suspect

Jun 09, 2009

A new image from NASA's Chandra X-ray Observatory shows a supernova remnant with a different look. This object, known as SNR 0104-72.3 (SNR 0104 for short), is in the Small Magellanic Cloud, a small neighboring ...

Mysterious Ring When Star Dies

Aug 10, 2004

A new image from NASA's Spitzer Space Telescope shows the shimmering embers of a dying star, and in their midst a mysterious doughnut-shaped ring. "Spitzer's infrared vision has revealed what could not be see ...

Supernova 1987A: Fast Forward to the Past

Aug 18, 2005

Recent Chandra observations have revealed new details about the fiery ring surrounding the stellar explosion that produced Supernova 1987A. The data give insight into the behavior of the doomed star in the ...

One Star's Life Ends With A Ring

Aug 19, 2004

A new image from NASA's Spitzer Space Telescope shows the shimmering embers of a dying star, and in their midst a strange doughnut-shaped ring. "Spitzer's infrared vision has revealed what could not be seen before - a m ...

Recommended for you

ESO image: A study in scarlet

10 hours ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

baudrunner
1 / 5 (1) Mar 30, 2010
Speaking of the Universe, I maintain that the acceleration of the expansion is an illusion, although the farther away objects are the faster they are moving away from us. After all, study the spiral galaxies with their arms unfurling and rotating. Of course the outer bodies are moving away from us because the spiral arms are throwing matter outwards, not just rotating faster for not being closer to the center but farther and farther away, like the velocity of rotation a short distance from the central axis versus that on the outside rim of a wheel. The apparent expansion is the result of red-shift changes relative to distance. When you strike a whip, the amplitude decreases with distance from the source, the hand. Same with frequency redshift. The entire Universe is in motion.

Some day..
omatumr
1 / 5 (3) Mar 30, 2010
Thanks for the story.

Our own solar system was made from the ashes of a precursor star, as shown in tallblokes talkshop: http://tinyurl.com/yaa56v8 or

http://tallbloke....-theory/

With kind regards,
Oliver K. Manuel
Glyndwr
not rated yet Mar 30, 2010
Speaking of the Universe, I maintain that the acceleration of the expansion is an illusion, although the farther away objects are the faster they are moving away from us.


What if the universe is part of infinite cycles? Maybe this notion is dismissed as humans cannot (or yet) comprehend no beggining or end to something

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...