Molecular Middle Managers Make More Decisions Than Bosses

Mar 29, 2010
Scientists are finding that on a molecular level organisms often function like social institutions. Some employ a military-like chain of command while in others important decisions are made by genetic middle managers.

(PhysOrg.com) -- Organisms are structured at the molecular level in ways similar to social hierarchies. In some, master genetic regulators call most of the shots, and in others most of life's activities are carried out by more egalitarian collaborations.

Knowing these organizational rules will help us understand biological systems and our social interactions, argues Mark Gerstein, A L Williams professor of biomedical informatics, and biochemistry, and computer science. He is the senior author of a paper on the subject published online the week of March 29 in the .

Gerstein and postdoctoral associate Nitin Bhardwaj analyzed regulatory networks of five diverse species, from E. coli to human, and rearranged those systems into hierarchies with a number of broad levels, including "master regulators," "middle managers" and "workhorses." In most organisms, master regulators control the activity of middle managers, which in turn govern suites of workhorse genes that carry out instructions for making proteins.

As a general rule, the more complex the organism, the less autocratic and more democratic the appear to be, researchers report. In both biological systems and corporate structures, interactions between middle managers are often more critical to functioning than actions by bosses. "If my department chair takes another job, the emphasis of my lab might change, but it will survive," Gerstein said. "But if my systems administrator leaves, my lab dies."

In simpler organisms such as E. coli, there tends to be a simple chain of command in which regulatory genes act like generals, and subordinate molecules "downstream" follow a single superior's instructions. Gerstein calls these systems "autocratic." But in more complex organisms, most of these subordinate genes co-regulate , in a sense sharing information and collaborating in governance. Gerstein labels these systems "democratic." If they share some qualities of both they are deemed "intermediate."

The interactions in more democratic hierarchies lead to mutually supporting partnerships between regulators than in autocratic systems, where if one gene is inactivated, the system tends to collapse. This is why Gerstein and colleagues in earlier work found that when they knocked out a master regulating gene in a complex organism, the "effects were more global, but softer" than when a key middle manager gene in a simpler life form was inactivated, which led to the death of the organism.

"Regulators in more complex species demonstrate a highly collaborative nature. We believe that these are due to the size and complexity of these genomes," Gerstein said. For example, about 250 master regulators in yeast have 6000 potential targets, a ratio of about one to 25. In humans, 20,000 targets are regulated by about 2,000 genes, a ratio of one to 10.

Explore further: For resetting circadian rhythms, neural cooperation is key

Related Stories

Researchers Track How Biology's Army Is Mobilized

Dec 18, 2008

(PhysOrg.com) -- Like a well-trained army, the fundamental biological processes of organisms are coordinated through a hierarchy of finely tuned molecular commands. In a new paper published online Dec. 18 in the journal Genes an ...

Cells are like robust computational systems

Jun 16, 2009

Gene regulatory networks in cell nuclei are similar to cloud computing networks, such as Google or Yahoo!, researchers report today in the online journal Molecular Systems Biology. The similarity is that each system keeps ...

Putting microRNAs on the stem cell map

Aug 07, 2008

Embryonic stem cells are always facing a choice—either to self-renew or begin morphing into another type of cell altogether. It's a tricky choice, governed by complex gene regulatory circuitry driven by a handful of key ...

Micro-RNAs Are Life’s Genetic Sculptors

Feb 26, 2009

(PhysOrg.com) -- Yale scientists have found a way to study within a living organism the wonders of micro-RNAs - tiny bits of RNA that act like a sculptor and shape the activity of hundreds of genes. The work ...

Recommended for you

Researchers successfully clone adult human stem cells

1 hour ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

4 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

23 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...