New method could revolutionize dating of ancient treasures

Mar 23, 2010
The "Venus of Brassempouy," a tiny ivory figurine, is among artifacts that scientists could analyze with a new method for determining the age of an object without damaging it. Credit: Wikimedia Commons

Scientists today described development of a new method to determine the age of ancient mummies, old artwork, and other relics without causing damage to these treasures of global cultural heritage. Reporting at the 239th National Meeting of the American Chemical Society (ACS), they said it could allow scientific analysis of hundreds of artifacts that until now were off limits because museums and private collectors did not want the objects damaged.

"This technique stands to revolutionize radiocarbon dating," said Marvin Rowe, Ph.D., who led the research team. "It expands the possibility for analyzing extensive museum collections that have previously been off limits because of their rarity or intrinsic value and the destructive nature of the current method of radiocarbon dating. In theory, it could even be used to date the ."

Rowe explained that the new method is a form of , the archaeologist's standard tool to estimate the age of an object by measuring its content of naturally-occurring radioactive carbon. A professor emeritus at Texas A&M University College Station, Rowe teaches at a branch of the university in Qatar. Traditional carbon dating involves removing and burning small samples of the object. Although it sometimes requires taking minute samples of an object, even that damage may be unacceptable for some artifacts. The new method does not involve removing a sample of the object.

Conventional carbon dating estimates the age of an artifact based on its content of carbon-14 (C-14), a naturally occurring, radioactive form of carbon. Comparing the C-14 levels in the object to levels of C-14 expected in the atmosphere for a particular historic period allows scientists to estimate the age of an artifact. Both the conventional and new carbon dating methods can determine the age of objects as far back as 45,000 to 50,000 years, Rowe said.

In conventional dating methods, scientists remove a small sample from an object, such as a cloth or bone fragment. Then they treat the sample with a strong acid and a strong base and finally burn the sample in a small glass chamber to produce carbon dioxide gas to analyze its C-14 content.

Rowe's new method, called "non-destructive carbon dating," eliminates sampling, the destructive acid-base washes, and burning. In the new method, scientists place an entire in a special chamber with a plasma, an electrically charged gas similar to gases used in big-screen plasma television displays. The gas slowly and gently oxidizes the surface of the object to produce carbon dioxide for C-14 analysis without damaging the surface, he said.

Rowe and his colleagues used the technique to analyze the ages of about 20 different organic substances, including wood, charcoal, leather, rabbit hair, a bone with mummified flesh attached, and a 1,350-year-old Egyptian weaving. The results match those of conventional techniques, they say.

The chamber could be sized to accommodate large objects, such as works of art and even the Shroud of Turin, which some believe to be the burial cloth of Jesus Christ, Rowe said. He acknowledged, however, that it would take a significant amount of data to convince museum directors, art conservators, and others that the new method causes no damage to such priceless objects

The scientists are currently refining the technique. Rowe hopes to use it, for instance, to analyze objects such as a small ivory figurine called the "Venus of Brassempouy," thought to be about 25,000 years old and one of the earliest known depictions of a human face. The figurine is small enough to fit into the chamber used for analysis.

Explore further: Researchers have developed a diagnostic device to make portable health care possible

Related Stories

New technology for dating ancient rock paintings

Mar 11, 2009

A new dating method finally is allowing archaeologists to incorporate rock paintings — some of the most mysterious and personalized remnants of ancient cultures — into the tapestry of evidence used to study life in prehistoric ...

Age test of Shroud of Turin planned

Feb 25, 2008

A British scientist is overseeing new tests on the Shroud of Turin that he says will show it dates to the time of Jesus of Nazareth.

Recommended for you

Chemical biologists find new halogenation enzyme

4 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

10 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

10 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

12 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Science to the rescue of art

Sep 14, 2014

Vincent van Gogh's "Sunflowers" are losing their yellow cheer and the unsettling apricot horizon in Edvard Munch's "The Scream" is turning a dull ivory.

User comments : 0