Iron-nitrogen compound forms strongest magnet known

Mar 22, 2010 by Lin Edwards report
Fe16N2. Image credit: Kikkawa Laboratory

( -- A group of scientists from the University of Minnesota say that Fe16N2 crystals are more magnetic than the most magnetic material previously known, and its magnetism exceeds the predicted limit of magnetism for a material.

Magnetism arises with the spinning in a material, and with every electron acting as a tiny magnet with its aligned with the axis of spin. In most atoms electrons may spin either ‘up’ or ‘down’, but when most of them spin in the same direction, the material becomes magnetic. In iron, for example, there are four more spinning in one direction than in the other.

In a more complex material, the theory is that there are river-like bands of electron clouds formed as those of the individual atoms merge together. Each band contains electrons spinning in only one direction, and the material’s magnetism is determined by the difference between the numbers of each type of band. Using the theory, scientists have predicted that iron-cobalt should be the most .

A group of materials physicists from Twin Cities, Minnesota, led by Jian-Ping Wang have found a material comprising 16 iron atoms and two of nitrogen is approximately 18% more magnetic than the predicted limit. The findings of x-ray analysis of the compound showed that six iron are clustered around each , with two more located between the two clusters. The researchers said electrons flowing between the clusters act like they do in ordinary iron, but within the clusters, the electrons tend to be localized, and this increases the magnetism.

Wang said it was suggested in 1972 that Fe16N2 was extremely magnetic, and this was backed up by Hitachi researchers in the 1990s, but these findings were not confirmed by later researchers. Fe16N2 is metastable and tends to form other crystal structures, complicating estimations of the volume of the material that is actually Fe16N2. Unlike previous studies, the present research used x-ray circular dichroism to measure the magnetization. This technique directly detects the localized electrons, and is thus less sensitive to volume effects than the earlier methods. Wang and the team have also produced simulations showing how the localized electrons emerge, which Wang says “make the whole scenario hang together”.

If the magnets can be manufactured commercially they could allow computer manufacturers to use smaller write heads that could hold more information. The findings were reported at the American Physical Society’s meeting this month.

Explore further: New research predicts when, how materials will act

More information:

Related Stories

Creating Highly Sought Magnetic Nanoparticles in One Step

May 02, 2008

Researchers from the University of Minnesota have demonstrated a one-step technique for producing a class of magnetic nanoparticles that could be used in everything from biomedical applications to data storage. ...

Novel magnets made from the strongest known hydrogen bond

Dec 06, 2006

A team of scientists from the US, the UK and Germany has been the first to make a magnetic material constructed from nature's strongest known hydrogen bond. Hydrogen bonds are responsible for many of the properties ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Brown physicist discovers odd, fluctuating magnetic waves

Feb 23, 2010

At the quantum level, the forces of magnetism and superconductivity exist in an uneasy relationship. Superconducting materials repel a magnetic field, so to create a superconducting current, the magnetic forces ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Mar 22, 2010
For expensive neodymium/samarium permanent magnet replacement some coercive force would be usefull, too..
4.9 / 5 (8) Mar 22, 2010
It would indeed be nice if rare earths be replaced with carefully designed metastructures of abundant materials.
5 / 5 (2) Mar 22, 2010
Uh-oh! There goes china's neodymium monopoly!!
not rated yet Mar 23, 2010
unfortunetaly these are highly reactive and big note - not superconductive

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.