Estimating ethanol yields from CRP croplands

Mar 19, 2010

The scramble to find sufficient land for biofuel production has experts eyeing marginal croplands that have been placed in the Conservation Reserve Program (CRP). Now a study by Agricultural Research Service (ARS) scientists indicates that plant species diversity and composition are key factors in potential energy yield per acre from biomass harvested from CRP land.

Agronomist Paul Adler, who works at the ARS Pasture Systems and Watershed Management Research Unit in University Park, Pa., led this research. Collaborators included University Park agronomist Matt Sanderson; microbiologist Paul Weimer, who works at the ARS U.S. Dairy Forage Research Center in Madison, Wis.; and Kenneth Vogel, who works at the ARS Grain, Forage and Bioenergy Research Unit in Lincoln, Neb.

The team studied composition, species diversity, aboveground biomass, plant chemical composition and potential ethanol yield at 34 warm-season grassland sites across the major ecological regions of the northeastern United States. The sites were a mix of CRP holdings, wildlife refuges, state parks and other public and private lands. The researchers identified 285 plant species, most of them native, on the study sites. Switchgrass, big bluestem and indiangrass, which are all tall native prairie grasses, dominated the vegetation mix. There was an average of 34 different plant species per quarter-acre.

CRP grasslands with the highest number of species had the lowest potential ethanol yields per acre. But sites dominated by a small number of native tall prairie species, such as switchgrass, big bluestem, and indiangrass, had the highest yields.

The results from this study demonstrated that the species composition of plant mixtures used in low-input, high-diversity systems affects both biomass production and chemical composition of the resulting feedstock. Including a large number of species with undesirable fermentation characteristics could reduce ethanol yields.

This extensive study also shows that CRP lands in the northeastern United States with a high proportion of tall native prairie grasses have the potential to produce more than 600 gallons of ethanol per acre. This energy can be produced while maintaining the ecological benefits of CRP grasslands.

Results from this study were published in the journal Ecological Applications.

Explore further: Climate change puts endangered Devils Hole pupfish at risk of extinction

Provided by United States Department of Agriculture

1 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

In search of wildlife-friendly biofuels

Oct 01, 2009

When society jumps on a bandwagon, even for a good cause, there may be unintended consequences. The unintended consequence of crop-based biofuels may be the loss of wildlife habitat, particularly that of ...

Researchers pursue grasses as Earth-friendly biofuel

Jul 21, 2008

(PhysOrg.com) -- At a small site on the Batavia campus of Fermilab, ecologist Julie Jastrow of Argonne National Laboratory pushes the scientific frontier in a new and exciting way: She watches the grass grow.

New Switchgrass Germplasm Collected in Florida

Nov 26, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists and cooperators have collected 46 new populations of switchgrass in Florida, adding valuable new accessions to the germplasm collection of this ...

Which grass is greener to power the bioenergy era?

Oct 03, 2008

(PhysOrg.com) -- Talk about a field of dreams. Cornell bioenergy plant experts are learning which field grasses are the best candidates for "dedicated energy" crops in the Northeast, considering the region's ...

Recommended for you

Human traffic threatens urban forests

13 hours ago

A study investigating the affect of recreational trails in endangered urban forests has found that their expansiveness and unmethodical planning is increasing fragmentation and impacting biodiversity.

User comments : 0