Silver proves its mettle for nanotech applications

Mar 19, 2010 by Richard Harth
A long single-strand of DNA has been folded into a triangular building platform through a process known as DNA origami. This architectural foundation was then "decorated" with one, two or three silver nanoparticles, which self-assembled at pre-determined locations on the DNA nanostructure. Credit: Hao Yan, Yan Liu, Biodesign Institute at Arizona State University

The self-assembling properties of the DNA molecule have allowed for the construction of an intriguing range of nanoscale forms. Such nanoarchitectures may eventually find their way into a new generation of microelectronics, semiconductors, biological and chemical sensing devices and a host of biomedical applications. Now Hao Yan and Yan Liu, professors at the Biodesign Institute's Center for Single Molecule Biophysics and their collaborators have introduced a new method to deterministically and precisely position silver nanoparticles onto self-assembling DNA scaffolds.

In their latest research, the group used a long single-strand of DNA, which had been folded into a triangular building platform through a process known as DNA origami. This architectural foundation was then 'decorated' with one, two or three , which self-assembled at pre-determined locations on the DNA nanostructure. The group's experimental results, which appear in the advanced online edition of the journal Angewandte Chemie, demonstrate for the first time the viability of using silver, rather than the gold nanoparticles traditionally applied to DNA-tile or origami based architectures. The study was co-authored by Suchetan Pal, Zhengtao Deng, Baoquan Ding.

One of many applications for DNA scaffolds studded with nanoparticles is to perform precise sensing operations at the molecular scale. Sensitive detection of single molecules with high specificity is of great scientific interest for chemists, biologists, pharmacologists, medical researchers and those involved in environmental areas where trace analysis is required. The detailed study of human is but one area where improved single-molecule detection could be of enormous benefit.

In their current effort, the group sought to exploit the properties of the silver nanoparticles to increase the resonance—a vibration of electrons that can give researchers clues regarding the molecular nature of the sample they are studying. "Theoretically, people predicted that a local surface plasmon resonance can be much stronger if you use silver particles compared to gold," said Yan. These locally enhanced areas between nanoparticles are referred to as electrical hot spots.

The group however, had to overcome significant obstacles to the use of silver nanoparticles. Silver tends to be much less stable than gold and can easily oxidize in its normal state. To counter this tendency, Yan and Liu's team attached multiple sulfur atoms to the backbone of the DNA strand used to make the platform for the nanoparticles. Each silver nanoparticle is then firmly held in place by nine sulfur atoms, once it is mounted on the DNA origami shape.

The new study paves the way for creating a more functional DNA architecture. "I believe this work will open doors to implement and study distance-dependent plasmonic interaction between noble at the single particle level," Yan said, adding that the first critical steps to creating hierarchically organized silver nanoparticle structures have now been taken.

Explore further: Gold nanoparticles help target, quantify breast cancer gene segments in a living cell

Related Stories

Revealing Photographs of DNA

May 10, 2007

Ultrasensitive genetic detection methods could revolutionize the diagnosis and treatment of diseases. However, all the techniques until now have been far too technically demanding for broad application. Munich researchers ...

Recommended for you

Cloaked DNA nanodevices survive pilot mission

Apr 22, 2014

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (2) Mar 19, 2010
Dr. Thomas Netzel, a former Chairman of the American Chemical Society wrote a technical review of Vulvox's DNA transistor concept, and stated that it will likely change the world in innumerable ways when three dimensional chips containing millions of times as many transistors as those in current chips show up in robots and speech translators that really understand English and in self driving and self navigating cars. They will be constructed from DNA and modified DNA made on solid phase synthesizers or by Vulvox's proprietary DNA synthesis process. That process can make DNA for nanoelectronics at a production cost hundreds of times less expensive than current methods. My company Vulvox has been a leader in this field. The same process can be used to manufacture high quality DNA for gene therapy and RNA for silencer RNA gene therapy.

DNA has been used to grow and assemble ZnO nanowires for piezo-electric sensors and to generate electricity from vibrations.
protn7@att.net

More news stories