Computer model predicts how materials meet in the middle

Mar 16, 2010 By Colin Smith and Lucy Goodchild
Computer model predicts how materials meet in the middle

(PhysOrg.com) -- Predicting the way different materials fuse together at an atomic level in objects including iPods, computer chips and even ships may be possible using a new computer model, described in the March issue of Nature Materials.

The authors of the study, from Imperial College London, say their new approach could help engineers understand and work out in advance how materials might behave. This could help them to design better materials with improved properties such as strength, flexibility or .

When two different crystalline materials, such as metals or ceramics, are joined together, there is an interface between them where individual atoms have to arrange themselves into certain positions. The chemical composition of this interfacial region may also be different from that of either crystal. The structure and composition of the interface can have a significant impact on the overall properties of the material.

In this video, the researchers behind the new model, Professor Adrian Sutton, from the Department of Physics, and Professor Mike Finnis, from the Departments of Materials and Physics, talk about interfaces, the computational approach they have developed and why this is a major breakthrough in materials research.

Explore further: Researchers discover new material to produce clean energy

More information: “A genetic algorithm for predicting the structures of interfaces in multicomponent systems” Nature Materials, corrected online 4 March 2010. Corresponding author: Professor Adrian Sutton, Imperial College London. A link to the paper is available here.

add to favorites email to friend print save as pdf

Related Stories

Model simulates atomic processes in nanomaterials

Mar 01, 2007

Researchers from MIT, Georgia Institute of Technology and Ohio State University have developed a new computer modeling approach to study how materials behave under stress at the atomic level, offering insights that could ...

Recommended for you

Unified theory for skyrmion-materials

7 hours ago

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Why seashells' mineral forms differently in seawater

11 hours ago

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

The building blocks of the future defy logic

Feb 26, 2015

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.