New lunar images and data available to the public

Mar 15, 2010
The seven instruments aboard the Lunar Reconnaissance Orbiter provide varied and unique datasets. This photo album published in concert with the first major public data release, gives a small taste of each instrument’s measurements and highlights some of the notable early achievements of the mission. Credit: NASA/GSFC/ASU

The public can follow along with NASA on its journey of lunar discovery. On March 15, the publicly accessible Planetary Data System will release data sets from the seven instruments on board NASA's Lunar Reconnaissance Orbiter.

"The Planetary Data System is a NASA funded program to archive data from past and present planetary missions as well as astronomical observations and laboratory data," said Dr. John Keller, Deputy Project Scientist from NASA Goddard Space Flight Center in Greenbelt, Md. "The purpose of the Planetary Data System is to make available to the public the fruits of NASA funded research and to allow advanced research on solar system science."

Each of the seven instruments is unique and will provide data in different formats to the Planetary Data System. Much of the data will be in a relatively low level form, not highly processed, which allows researchers to maximize flexibility in working with the data. The instrument teams will also provide higher level data products in the form of maps and calibrated images for the general public. Many of the images can be accessed using a computer with an internet browser.

Prior to the formal release of LRO data, the Lunar Reconnaissance Orbiter Camera team released several hundred images from the pair of Narrow Angle Cameras on-board the spacecraft. These images were released to give researchers a head start on using the data before the tidal wave of data was unleashed.

"We're able to take advantage of the close proximity of the Moon, compared to other objects in the , to transmit data from LRO back to Earth at a very high rate," said Keller. "The first data release is 55 terabytes. The one year exploration mission will deliver 130 terabytes of data, enabling a more detailed study our nearest celestial neighbor. We expect LRO to provide more data than all of the previous planetary missions combined."

LRO was mandated to release data to the Planetary Data System beginning six months after initial operation. Some of the higher level data products require the full year of measurements and won't be released until after the end of the exploration mission. LRO will move into its science phase in September, when the program management responsibility moves from the Exploration Systems Mission Directorate to the Science Mission Directorate at NASA Headquarters.

LRO is scheduled for a one year exploration mission in a polar orbit about 31 miles above the lunar surface. During this time, LRO will produce a comprehensive map of the lunar surface in unprecedented detail, search for resources and potential safe landing sites for a potential future return to the moon and measure lunar temperatures and radiation levels.

The lunar bound spacecraft launched from Kennedy Space Center, Fla. on June 18, 2009. Since that time the spacecraft has completed calibration and commissioning. LRO formally began its detailed survey of the in September 2009. First results from the mission included - new looks at the Apollo landing sites; indications that permanently shadowed and nearby regions may harbor water and hydrogen; observations that large areas in the permanently shadowed regions are colder than Pluto; and detailed information on lunar terrain. LRO also supported the Lunar Crater Observation and Sensing Satellite impact, first by helping to select a promising site and second by observing both the expanding plume that arose after the impact and the evolving temperature at the impact site.

Explore further: After Rosetta, Japanese mission aims for an asteroid in search of origins of Earth's water

More information: To access the Planetary Data System, go to: pds.jpl.nasa.gov

Related Stories

Send Your Name to the Moon Aboard LRO

May 01, 2008

NASA invites people of all ages to join the lunar exploration journey with an opportunity to send their names to the moon aboard the Lunar Reconnaissance Orbiter, or LRO, spacecraft.

Scientist to Work With NASA's Lunar Orbiter

Jan 25, 2005

NASA has selected Mark S. Robinson, research associate professor of geological sciences in Northwestern University’s Weinberg College of Arts and Sciences, as one of six scientists to provide instrumentation and associated ...

LRO lunar mission successfully enters moon orbit

Jun 23, 2009

After a four and a half day journey from the Earth, the Lunar Reconnaissance Orbiter, or LRO, has successfully entered orbit around the moon. Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., ...

NASA tests moon orbiter components

Jan 12, 2008

U.S. engineers are testing the components of the Lunar Reconnaissance Orbiter to make sure it is ready for its mission to the moon.

Recommended for you

SDO captures images of two mid-level flares

14 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

21 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Loodt
1 / 5 (1) Mar 16, 2010
Sorry mates, ...potential safe landing sites for a potential future return to the moon...

Obama wants to save Mother Gaia first.

Maybe the Chinese or Indians can use this data...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.