New defenses deployed against plant diseases

Mar 14, 2010
This is Dr. Cyril Zipfel of Norwich BioScience Institutes. Credit: Sainsbury Laboratory

An international team led by scientists at the Sainsbury Laboratory in Norwich, UK, have transferred broad spectrum resistance against some important plant diseases across different plant families. This breakthrough provides a new way to produce crops with sustainable resistance to economically important diseases.

Food insecurity is driving the search for ways to increase the amount of food we grow, whilst at the same time reducing unsustainable agricultural inputs. One way to do this is to increase the innate ability of crops to fight off disease-causing pathogens. Increased disease resistance would reduce yield losses as well as reduce the need for pesticide spraying.

Breeding programs for resistance generally rely on single resistance genes that recognise molecules specific to particular strain of pathogens. Hence this kind of resistance rarely confers broad-spectrum resistance and is often rapidly overcome by the pathogen evolving to avoid recognition by the plant.

However, plants have another defence system, based on pattern recognition receptors (PRRs). PRRs recognise molecules that are essential for pathogen survival. These molecules are less likely to mutate without harming the pathogen's survival, making resistance to them more durable in the field. These essential molecules are common to many different , meaning that if a plant recognises and can defend itself against one of these molecular patterns, it is likely to be resistant against a broad range of other pathogens.

Very few of these PRRs have been identified to date. Dr Cyril Zipfel and his group at the Sainsbury Laboratory in Norwich, UK, took a Brassica-specific PRR that recognises bacteria, and transformed it into the Solanaceae plants Nicotania benthaminia and tomato.

"We hypothesised that adding new recognition receptors to the host arsenal could lead to enhanced resistance," said Dr Zipfel.

Under controlled laboratory conditions, they tested these transformed plants against a variety of different plant pathogens, and found drastically enhanced resistance against many different bacteria, including some of great importance to modern agriculture such as Rastonia solanaceraum, the causal agent of bacterial wilt and a select agent in the United States under the Agricultural Bioterrorism Protection Act of 2002.

"The strength of this resistance is because it has come from a different plant family, which the pathogen has not had any chance to adapt to. Through genetic modification, we can now transfer this resistance across plant species boundaries in a way traditional breeding cannot," said Dr Zipfel.

Published in the journal Nature Biotechnology, the finding, that plant recognition receptors can be successfully transferred from one plant family to another provides a new biotechnological solution to engineering disease resistance. The Zipfel group is currently extending this work to other crops including potato, apple, cassava and banana that all suffer from important bacterial diseases, particularly in the developing world.

"A guiding principle in plant pathology is that most plants tend to be resistant to most . Cyril's work indicates that transfer of genes that contribute to this basic innate immunity from one plant to another can enhance pathogen resistance," commented Professor Sophien Kamoun, Head of the Sainsbury Laboratory. "The implications for engineering crop with enhanced resistance to infectious diseases are very promising."

This research was funded by the Gatsby Charitable Foundation and the Two Blades Foundation, who have patented the technology on behalf of the inventors, and involved research groups from INRA/CNRS in France, the University of California, Berkeley and Wageningen University in the Netherlands.

Explore further: Study finds new links between number of duplicated genes and adaptation

More information: Inter-family transfer of a plant pattern recognition receptor confers broad-spectrum bacterial resistance, will be published online by Nature Biotechnology on 14th March 2010. doi:10.1038/nbt.1613

Provided by Norwich BioScience Institutes

5 /5 (1 vote)

Related Stories

Tomato stands firm in face of fungus

May 09, 2008

Scientists at the University of Amsterdam have discovered how to keep one’s tomatoes from wilting – the answer lies at the molecular level. The story of how the plant beat the pathogen, and what it means for combating ...

Genes identified to protect brassicas from damaging disease

Nov 01, 2007

Scientists have identified a new way to breed brassicas, which include broccoli, cabbage and oilseed rape, resistant to a damaging virus. Their discovery has characterised a form of resistance that appears to be durable, ...

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

12 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

12 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

19 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.