Way to go: Scientists identify driving forces in human cell division

Mar 10, 2010
This is a metaphase in a human cervical carcinoma (HeLa) cell. Chromosomes are red and microtubules are green. Credit: Jason Swedlow, University of Dundee

If you can imagine identical twin sisters at rest, their breath drawing them subtly together and apart, who somehow latch onto ropes that pull them to opposite sides of the bed -- you can imagine what happens to a chromosome in the dividing cell.

Understanding the forces that drive -- a crucial aspect of human development and some diseases, including - is the goal of an international group of researchers who collaborate each summer at the MBL.

In a paper published this week, the group describes newly discovered interactions between sister kinetochores -- the bundles at the contact point between the two identical strands of a chromosome -- and microtubules, the "ropes" that attach to the kinetochores to pull the strands apart.

To do this, the group developed a novel pipeline for preparing and photographing dividing human cells, as well as computational image analysis to quantify the interplay of sister kinetochores in three dimensions.

"We believe we have developed new methods and gained insights that simply aren't available anywhere else. We couldn't have done this work anywhere except at the MBL," says Jason Swedlow, a professor at the University of Dundee in Scotland.

Explore further: The origins of polarized nervous systems

More information: Jaqaman, K., et al. (2010) Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665. Original data for this article is posted in the JCB Data Viewer: jcb-dataviewer.rupress.org/jcb/browse/1755/

Provided by Marine Biological Laboratory

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Slicing chromosomes leads to new insights into cell division

May 29, 2009

(PhysOrg.com) -- By using ultrafast laser pulses to slice off pieces of chromosomes and observe how the chromosomes behave, biomedical engineers at the University of Michigan have gained pivotal insights into mitosis, the ...

Recommended for you

The origins of polarized nervous systems

11 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

15 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

16 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.