Way to go: Scientists identify driving forces in human cell division

Mar 10, 2010
This is a metaphase in a human cervical carcinoma (HeLa) cell. Chromosomes are red and microtubules are green. Credit: Jason Swedlow, University of Dundee

If you can imagine identical twin sisters at rest, their breath drawing them subtly together and apart, who somehow latch onto ropes that pull them to opposite sides of the bed -- you can imagine what happens to a chromosome in the dividing cell.

Understanding the forces that drive -- a crucial aspect of human development and some diseases, including - is the goal of an international group of researchers who collaborate each summer at the MBL.

In a paper published this week, the group describes newly discovered interactions between sister kinetochores -- the bundles at the contact point between the two identical strands of a chromosome -- and microtubules, the "ropes" that attach to the kinetochores to pull the strands apart.

To do this, the group developed a novel pipeline for preparing and photographing dividing human cells, as well as computational image analysis to quantify the interplay of sister kinetochores in three dimensions.

"We believe we have developed new methods and gained insights that simply aren't available anywhere else. We couldn't have done this work anywhere except at the MBL," says Jason Swedlow, a professor at the University of Dundee in Scotland.

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

More information: Jaqaman, K., et al. (2010) Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665. Original data for this article is posted in the JCB Data Viewer: jcb-dataviewer.rupress.org/jcb/browse/1755/

Provided by Marine Biological Laboratory

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Slicing chromosomes leads to new insights into cell division

May 29, 2009

(PhysOrg.com) -- By using ultrafast laser pulses to slice off pieces of chromosomes and observe how the chromosomes behave, biomedical engineers at the University of Michigan have gained pivotal insights into mitosis, the ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0