Unselfish molecules may have helped give birth to the genetic material of life (w/ Video)

Mar 08, 2010

One of the biggest questions facing scientists today is how life began. How did non-living molecules come together in that primordial ooze to form the polymers of life? Scientists at the Georgia Institute of Technology have discovered that small molecules could have acted as "molecular midwives" in helping the building blocks of life's genetic material form long chains and may have assisted in selecting the base pairs of the DNA double helix. The research appears in the online early edition of the Proceedings of the National Academy of Sciences beginning March 8, 2010.

"Our hypothesis is that before there were protein enzymes to make DNA and , there were small molecules present on the pre-biotic Earth that helped make these polymers by promoting molecular self-assembly," said Nicholas V. Hud, professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology. "We've found that the molecule ethidium can assist short oligonucleotides in forming long polymers and can also select the structure of the base pairs that hold together two strands of DNA."

One of the biggest problems in getting a to form is that, as it grows, its two ends often react with each other instead of forming longer chains. The problem is known as strand cyclization, but Hud and his team discovered that using a molecule that binds between neighboring base pairs of DNA, known as an intercalator, can bring short pieces of and RNA together in a manner that helps them create much longer molecules.

This video is not supported by your browser at this time.
Unselfish molecules may have helped give birth to the genetic material of life. Credit: Georgia Tech

"If you have the intercalator present, you can get polymers. With no intercalator, it doesn't work, it's that simple," said Hud.

Hud and his team also tested how much influence a midwife molecule might have had on creating DNA's Watson-Crick base pairs (A pairs with T, and G pairs with C). They found that the midwife used could determine the base pairing structure of the polymers that formed. Ethidium was most helpful for forming polymers with Watson-Crick base pairs. Another molecule that they call aza3 made polymers in which each A base is paired with another A.

"In our experiment, we found that the midwife present had a direct effect on the kind of base pairs that formed. We're not saying that ethidium was the original midwife, but we've shown that the principle of a small molecule working as a midwife is sound. In our lab, we're now searching for the identity of a molecule that could have helped make the first genetic polymers, a sort of 'unselfish' molecule that was not part of the first genetic polymers, but was critical to their formation," said Hud.

Explore further: Mycobacteria metabolism discovery may pave way for new tuberculosis drugs

Provided by Georgia Institute of Technology

4.3 /5 (9 votes)

Related Stories

Models begin to unravel how single DNA strands combine

Oct 05, 2009

(PhysOrg.com) -- Using computer simulations, a team of University of Wisconsin-Madison researchers has identified some of the pathways through which single complementary strands of DNA interact and combine to form the double ...

Unraveling the physics of DNA's double helix

Jul 12, 2007

Researchers at Duke University's Pratt School of Engineering have uncovered a missing link in scientists' understanding of the physical forces that give DNA its famous double helix shape.

Recommended for you

Brand new technology detects probiotic organisms in food

2 hours ago

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

2 hours ago

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

20 hours ago

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

seneca
not rated yet Mar 08, 2010
I presume, the formation of phase interface in presence of liposomes could simplify the answer to many questions related to unwanted cyclization of nucleic acids.
Sabry
not rated yet Mar 08, 2010
although one step closer, the main question is still unanswered, under what conditions have these molecules formed ?
I hope we don't need to rewrite the Earth's geological history in an attempt to answer this !