New ways to disarm deadly South American hemorrhagic fever viruses

Mar 08, 2010

New World hemorrhagic fevers are emerging infectious diseases found in South America that can cause terrible, Ebola-like symptoms. Current treatments are expensive and only partially effective.

Now, Howard Hughes Medical Institute (HHMI) researchers have discovered exactly how one type of New World hemorrhagic fever virus latches onto and infects human cells, offering a much-needed lead toward new treatments.

"New World hemorrhagic fevers are nasty, serious, and often fatal diseases," says Stephen C. Harrison, an HHMI investigator at Harvard Medical School and senior author of the report, published March 7, 2010, in Nature Structural & Molecular Biology. "The need for new interventions is high."

Arenaviruses, the infectious agents that cause New World hemorrhagic fevers, circulate naturally in rodents and can infect people who are in close contact with the animals. Symptoms include severe inflammation and bleeding from the mouth, nose, eyes, and other orifices. Most outbreaks occur in rural regions of Bolivia, Venezuela, Argentina, and Brazil. "The outbreaks of New World tend to be brief and brutal, with mortality rates of 20 to 30 percent," says Jonathan Abraham, an M.D./Ph.D. candidate at Harvard University and first author of the paper. "These viruses aren't a huge public health issue yet, but you could say the New World hemorrhagic fevers are an emerging disease threat."

Researchers have known about these viruses since the 1960s, but the molecular basis of the disease has only been tackled recently, says Abraham, whose graduate studies are funded by HHMI through a Gilliam Fellowship for Advanced Study. The Gilliam Fellowships program currently supports the doctoral education of 30 exceptional students from disadvantaged backgrounds.

In 2007, Abraham was working with Boston Children's Hospital virologist Hyeryun Choe when he was co-first author on a report in Nature identifying the human cell surface receptor that the Machupo virus, an arenavirus, grabs to gain access to the human cell it is infecting. The receptor, called transferrin receptor 1, offers a handhold for Machupo virus as it invades cells in the body. Nearly every human cell displays the transferrin receptor, which ferries iron into cells.

Abraham then brought the project to Harrison, who had mentored the young scientist in 2004 as part of HHMI's Exceptional Research Opportunities Program (EXROP), which places undergraduate students from disadvantaged backgrounds in the laboratories of HHMI investigators and HHMI professors. The pairing was fortuitous. In Choe's laboratory, Abraham had developed methods to produce the Machupo virus surface protein, which links to the human transferrin receptor. Meanwhile, Harrison had stocks of purified transferrin receptor because he had previously worked to image the molecule and understood its molecular structure.

Together, the pair made batches of the Machupo surface protein bound to the transferrin receptor and then set about creating an image showing how the two molecules connected. They used x-ray crystallography, a technique in which protein crystals are bombarded with x-ray beams. As the x-rays pass through and bounce off of atoms in the crystal, they produce a diffraction pattern, which can then be analyzed to determine the three-dimensional shape of the protein. After a data collection trip to the powerful x-ray beam at Argonne National Laboratory in Illinois, Abraham and Harrison were able to examine the atomic structure of the Machupo surface protein attached to the transferrin receptor.

The images show that the Machupo surface protein binds to the transferrin receptor in a surprising way—using a loop called the apical domain. The biological function of this loop in humans is unknown, Harrison says. Other segments of the receptor bind iron-bearing transferrin, but the apical domain appears to be uninvolved in that process. "We don't know the normal function of the apical domain. Obviously it didn't evolve just to give Machupo virus a way to infect humans, but that's what the virus has evolved to latch onto," he says.

Because the apical domain is not involved in the critical task of moving iron into cells, Harrison says it presents an attractive target for drugs. In theory, an antibody designed to attach to the apical domain would prevent the Machupo from attaching to cells, blocking infection. One possible treatment strategy, then, would be to infuse patients with such an antibody during the early stages of infection, which might slow the infection enough to let patients recover.

Harrison says the finding might also help virologists predict which of the 22 known arenaviruses might be capable of infecting humans. Only five are known to infect humans now—and all of those bind to the human transferrin receptor. Presumably the other 17 viruses produce surface proteins that are unable to bind to the human transferrin receptor, Harrison says.

For Abraham, the idea of finding a treatment for these New World hemorrhagic fevers is close to his heart. His family hails from Haiti, where there is a "huge burden of . I'd like to dedicate my career to studying pathogens in underserved parts of the world," he says.

Explore further: Molecular gate that could keep cancer cells locked up

More information: Published online Nature Structural & Molecular Biology, (7 March 2010) doi:10.1038/nsmb.1772 ; Jonathan Abraham, Kevin D Corbett,Michael Farzan, Hyeryun Choe & Stephen C Harrison; "Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses".

Related Stories

Researchers Unravel Mystery of How Ebola and Marburg Kill

Oct 19, 2006

Researchers in the Greene Infectious Disease Laboratory at Columbia University’s Mailman School of Public Health, the Centers for Disease Control and Prevention, and the Caribbean Primate Research Center have discovered ...

New images may improve vaccine design for deadly rotavirus

Jun 11, 2009

Howard Hughes Medical Institute researchers are reporting the first detailed molecular snapshots of a deadly gastrointestinal virus as it is caught in the grasp of an immune system molecule with the capacity to destroy it. ...

Scientists identify new cellular receptor for HIV

Feb 10, 2008

A cellular protein that helps guide immune cells to the gut has been newly identified as a target of HIV when the virus begins its assault on the body's immune system, according to researchers from the National Institute ...

Recommended for you

Molecular gate that could keep cancer cells locked up

Jul 31, 2014

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

Jul 31, 2014

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0