Researchers move closer to understanding chaotic motion of a solid body in a fluid

Feb 24, 2010
So-called "Poincaré sections" were used to diagnose chaos in the body-flow interaction study of Johan Roenby of the Technical Univeristy of Denmark and Hassan Aref of Virginia Tech. The regular curves correspond to motions with minimal chaos. The "fuzzy" regions indicate that the chaotic regime has been entered. Credit: Johan Roenby

In a paper appearing in the Feb. 24 issue of the Proceedings of the Royal Society of London A, Virginia Tech Engineering Science and Mechanics Professor Hassan Aref, and his colleague Johan Roenby at the Technical University of Denmark shed new light on the chaotic motion of a solid body moving through a fluid. They claim to have discovered two basic mechanisms that lead to chaotic motion of the body as it interacts with its vortex wake. The work may lead to better understanding and control of real body-vortex interactions.

Although it goes back to the work of Henri Poincaré at the end of the 19th century, chaos emerged in earnest as a new concept in science in the 1960s. Scientists then realized that even very simple systems, governed by perfectly deterministic laws, could have very complicated and seemingly random behavior. Anyone who has played with dice literally has had hands-on experience with the high sensitivity to initial conditions exhibited by a chaotic system. This makes long-term prediction of the system's evolution virtually impossible, Aref and Roenby explained.

It has long been known that the motion of a solid object through a fluid may be chaotic. Mechanisms that lead to chaotic motion in such systems are important, sometimes because one wants to avoid them, at other times because one wants to exploit them. For instance, when designing aircraft, one strives to prevent chaotic motion, whereas it might be a good strategy for a prey trying to escape a predator to enter a regime of erratic, unpredictable motion.

Fluid-body interactions are not very well understood. It is, however, reasonably well established that the delicate interplay between the body and the vortices shed from it, and present in the fluid, plays a key role. For example, it may be shown that if the motion is strictly two-dimensional and there are no vortices, chaos cannot occur. Chaos can occur for three-dimensional motion of a solid body through a fluid even in the absence of vortices.

To understand how vortices may create chaos in the body motion, Aref and Roenby studied a simplified body-vortex interaction model. The simplicity of the model allowed the scientists to take well-known, non-chaotic solutions as the starting point and then slowly increase the influence of parameters that would cause chaos to occur. It was by triggering the chaos in this controlled manner that the authors discovered two sources of chaos in the model.

This video is not supported by your browser at this time.
Idealized Body-Vortex Interaction. This animation shows the interaction of two point vortices (small red dots with red and cyan traces) of strenths 2 and -1, respectively, with a slightly elliptic rigid body moving freely in an unbounded 2D ideal fluid. Also shown is a small blob of passively advected fluid particles colored black for visualization. The chaotic nature of the system is apparent from the traces of the vortices, body and particles.

The work "shows how a chaotic region grows from a specific type of equilibrium," the authors claimed. Aref and Roenby knew from classical hydrodynamics that a body in an "unbounded, ideal liquid has a limiting motion between the rocking and tumbling regime. Adding a vortex to this effectively acts as a random torque on the body." This is one mechanism for chaos. The other chaotic regime arises when the body is made slightly non-circular. For certain parameter regimes this renders the motion, and thereby its force on the body, chaotic. "The kind of parametric scans we have performed may give important clues as to which geometries and parameter regimes to avoid, if one wants to prevent chaotic motion", the authors said.

As Aref, Roenby and others unravel the forces that come into play when vortices are produced through interaction between a solid body and the fluid surrounding it, they are furthering the understanding of aerodynamic and hydrodynamic forces, the drag and lift that are paramount in virtually all motion of bodies through air or water.

Explore further: Technique for heat-assisted magnetic recording media promises improved writeability for next-generation hard drives

More information: More videos on the work can be found at

Related Stories

Meaning from chaos

Nov 21, 2005

Transmitting light-based signals by embedding them in chaos doesn't sound like a particularly good idea. But in last week's issue of Nature, Claudio Mirasso and co-workers show otherwise. They have demonstrated that it is ...

Optical fibre: secure in all the chaos

Jan 17, 2008

Secure messages hidden in chaotic waveforms, transmitted at up to 10 gigabits per second, is the vision behind a group of dedicated European researchers. Now they are prototyping the equipment that could make the vision a ...

Chaos, Twist Maps and Big Business

Jul 26, 2004

Obscure mathematical ideas developed back in the 1980s could solve current problems of mixing fluids at the microscale, and revolutionise the technology, reports an article in Science this week (23 July 2004). ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

22 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

22 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Feb 24, 2010
If you substitute the liquid with plasma and the solid body with a magnetic field (causing displacement in the plasma) than perhaps some of these insights could carry over to research in nuclear fusion.