From carnivorous plants to the medicine cabinet?

Feb 18, 2010

In the tropics, carnivorous plants trap unsuspecting prey in a cavity filled with liquid known as a "pitcher."

The moment insects like flies, ants and beetles fall into a pitcher, the plant's enzymes are activated and begin dissolving their new meal, obtaining nutrients such as carbon and nitrogen which are difficult to extract from certain soils. Carnivorous plants also possess a highly developed set of compounds and secondary metabolites to aid in their survival.

These compounds could serve as a new class of anti-fungal drugs for use in human medicine, says Prof. Aviah Zilberstein of Tel Aviv University's Department of Plant Sciences. In a study conducted together with Dr. Haviva Eilenberg from her lab, Prof. Esther Segal from Sackler Faculty of Medicine and Prof. Shmuel Carmeli from the School of Chemistry, the unusual components from the plants' pitchers were found effective as anti-fungal drugs against human fungal infections widespread in hospitals. The primary results are encouraging.

"To avoid sharing precious food resources with other micro-organisms such as fungi, the carnivorous plant has developed a host of agents that act as natural anti-fungal agents," says Prof. Zilberstein. "In the natural habitat of the tropics, competition for food is fierce, and the hot, moist environment is perfect for fungi, which would also love to eat the plant's insect meal."

Highly resistant and 100% organic

After initial tests of the plant proteins and enzymes that dissolve the chitin of fungi, Prof. Zilberstein assumes that, in the right clinical conditions, the pitcher secondary metabolites can be developed to effective anti-fungal drugs, that may avoid the evolution of new resistant infective strains.

The collaborating team has just published a paper exploring that potential in the , based on the biology of the carnivorous plant Nepenthes khasiana. This plant species is originally found in India but is also being reared in Tel Aviv University greenhouses.

Currently there is a need for additional broadly effective anti-fungal drugs. Even mildly severe forms of athlete's foot or other skin fungal infections lack effective treatments. The problem becomes more dire at hospitals, where thousands of Americans die each year from secondary fungal infections they acquire during their stay as patients.

Forging a "wild" pathway in drug discovery

The collaborating team has determined plant secondary metabolites that function as anti-fungal agents. "The pitcher of the carnivorous plant produces these compounds in a gland," says Prof. Zilberstein. Until now, no one has published or discussed the anti-fungal metabolites found in the trap liquid of this plant, she says.

"We're hoping that these metabolites are working together to keep fungus at bay. Our aim now is to get funding for pre-clinical tests of these compounds in an animal model, so we can investigate their effectiveness against the two very acute fungal pathogens found in hospitals worldwide," she says.

The idea that liquid from a plant pitcher could stave off infection has been documented in the folk literature of India, where people drink carnivorous plant pitcher juice as a general elixir. "There is a lot of room for developing compounds from nature into new drugs," says Prof. Zilberstein. "The one we are working on is not toxic to humans. Now we hope to show how this very natural product can be further developed as a means to overcome some basic problems in hospitals all over the world."

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Could fungal collection hold the key to new life-saving drugs?

Jun 13, 2007

Scientists may be one step closer to finding new drugs to fight MRSA, cancers and other diseases, after CABI, a leading bioservices organisation announced that its fungal collection will be screened by the University of Strathclyde.

New compounds may control deadly fungal infections

Dec 22, 2009

An estimated 25,000 Americans develop severe fungal infections each year, leading to 10,000 deaths despite the use of anti-fungal drugs. The associated cost to the U.S. health care system has been estimated at $1 billion ...

An underwater drugstore?

Feb 26, 2009

No matter how sophisticated modern medicine becomes, common ailments like fungal infections can outrun the best of the world's antibiotics. In people with compromised immune systems (like premature babies, AIDS victims or ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.