Compound from Myrtles Synthesized: Successful Total Synthesis of Myrtucommulone A

Feb 18, 2010

(PhysOrg.com) -- Myrtle has been considered to be a medicinal plant since ancient times. In addition to a number of essential oils, myrtle contains myrtucommulone A, a pharmacologically interesting compound that has antibacterial, analgesic, and strong anti-inflammatory effects, among others. Recent tests also indicate a highly selective cytostatic effect on tumors.

A team led by Johann Jauch has now successfully synthesized myrtucommulone A in the laboratory. As the scientists report in the journal , the synthetic compound has the same anti-inflammatory and cytostatic activity as the natural version.

The myrtle (Myrtus communis) is an evergreen shrub native to the Mediterranean region that has small, aromatically scented, leathery leaves, small white flowers, and blue-black berries. The leaves and berries are occasionally used in Mediterranean cooking. Since ancient times, the myrtle, rich in essential oils, has been known as a medicinal plant. Pharmacological researchers are particularly interested in a group of substances, called the myrtucommulones, from the myrtle plant. However, their extraction from the leaves of the myrtle is very difficult and delivers small yields. “The synthetic preparation of myrtucommulones would make these substances available in quantities sufficient to better examine their pharmacological properties,” says Jauch. “Also, we could develop analogues that may be more effective than the original substances. The strength of the natural substance could thus be augmented.”

The researchers have now succeeded in such a total synthesis. Starting with commercially available starting materials or substances known from the literature, the team from Saarland University in Saarbrücken and the University of Tübingen has now synthesized myrtucommulone A, its natural variants C and F, and an analogue in a one-step reaction. Their structures could be confirmed by means of spectroscopic techniques and a analysis.

“Laboratory tests demonstrated that the synthetic myrtucommulone A has just as strong an anti-inflammatory effect as the natural compound,” says Jauch. “Just like the agent derived from the plant extract, it triggers programmed cell death (apoptosis) in tumor cells.” The scientists next plan to determine the absolute spatial configuration of the compound and to produce and test more analogues.

Explore further: Dead feeder cells support stem cell growth

More information: Johann Jauch, Total Synthesis of Myrtucommulone A, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.200903906

Related Stories

Ancient war paint in fight against breast cancer

Aug 14, 2006

A plant that gave ancient Britons and Celts their blue war paint, has been found to be a rich source of the anti-cancer compound, glucobrassicin, traditionally associated with broccoli. Glucobrassicin has been found to be ...

Screening the herbal pharmacy

Mar 04, 2008

Curing cancer with natural products – a case for shamans and herb women? Not at all, for many chemotherapies to fight cancer applied in modern medicine are natural products or were developed on the basis of natural substances. ...

The quest for specific anti-inflammatory treatment

Jan 08, 2009

Anti-inflammatory drugs affect the cells taking part in inflammatory processes, but also those that do not. This is why it is important to develop specific anti-inflammatory drugs which affect healthy cells. With this aim ...

Recommended for you

Dead feeder cells support stem cell growth

15 hours ago

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.