Ancient remains put teeth into Barker hypothesis

Feb 04, 2010

Ancient human teeth are telling secrets that may relate to modern-day health: Some stressful events that occurred early in development are linked to shorter life spans.

"Prehistoric remains are providing strong, physical evidence that people who acquired tooth enamel defects while in the womb or early childhood tended to die earlier, even if they survived to adulthood," says Emory University anthropologist George Armelagos.

Armelagos led a systematic review of defects in teeth enamel and early mortality recently published in . The paper is the first summary of prehistoric evidence for the Barker hypothesis - the idea that many adult diseases originate during fetal development and early childhood.

"Teeth are like a snapshot into the past," Armelagos says. "Since the chronology of enamel development is well known, it's possible to determine the age at which a physiological disruption occurred. The evidence is there, and it's indisputable."

The Barker hypothesis is named after epidemiologist David Barker, who during the 1980s began studying links between early infant health and later adult health. The theory, also known as the Developmental Origins of Health and Disease Hypothesis (DOHaD), has expanded into wide acceptance.

As one of the founders of the field of bioarcheology, Armelagos studies skeletal remains to understand how diet and disease affected populations. Tooth enamel can give a particularly telling portrait of physiological events, since the enamel is secreted in a regular, ring-like fashion, starting from the second trimester of fetal development. Disruptions in the formation of the enamel, which can be caused by disease, poor diet or , show up as grooves on the .

Armelagos and other bioarcheologists have noted the connection between dental enamel and early mortality for years. For the paper, Armelagos led a review of the evidence from eight published studies, applying the lens of the Barker hypothesis to remains dating back as far as 1 million years.

One study of a group of Australopithecines from the South African Pleistocence showed a nearly 12-year decrease in mean life expectancy associated with early enamel defects. In another striking example, remains from Dickson Mounds, Illinois, showed that individuals with teeth marked by early life stress lived 15.4 years less than those without the defects.

"During prehistory, the stresses of infectious disease, poor nutrition and psychological trauma were likely extreme. The teeth show the impact," Armelagos says.

Until now, have not been analyzed using the Barker hypothesis, which has mainly been supported by a correlation between birth weight in modern-day, high-income populations and ailments like diabetes and heart disease.

"The prehistoric data suggests that this type of dental evidence could be applied in modern populations, to give new insights into the scope of the Barker hypothesis," Armelagos says. "Bioarcheology is yielding lessons that are still relevant today in the many parts of the world in which infectious diseases and under-nutrition are major killers."

Explore further: Greek archaeology site sparks intense interest (Update)

Related Stories

Genetic discovery could lead to advances in dental treatment

Feb 23, 2009

Researchers have identified the gene that ultimately controls the production of tooth enamel, a significant advance that could some day lead to the repair of damaged enamel, a new concept in cavity prevention, and restoration ...

Researchers Crack the Mystery of Resilient Teeth

Apr 17, 2009

(PhysOrg.com) -- After years of biting and chewing, how are human teeth able to remain intact and functional? A team of researchers from The George Washington University and other international scholars have ...

Exposure to alkaline substances can result in damaged teeth

Oct 27, 2009

It has long been known that acids can erode tooth enamel but a new Swedish study from the Sahlgrenska Academy at the University of Gothenburg, Sweden, shows that strong alkaline substances can damage teeth too - substances ...

Norwegian Tooth Bank seeks milk teeth from 100,000 children

Mar 31, 2008

The Norwegian Tooth Bank is requesting milk teeth from 100 000 children in Norway and could become the biggest tooth bank in the world. Milk teeth can give unique information about environmental influences and nutrition ...

Recommended for you

Dinosaur footprints set for public display in Utah

52 minutes ago

A dry wash full of 112-million-year-old dinosaur tracks that include an ankylosaurus, dromaeosaurus and a menacing ancestor of the Tyrannosaurus rex, is set to open to the public this fall in Utah.

Fossil arthropod went on the hunt for its prey

11 hours ago

A new species of carnivorous crustacean has been identified, which roamed the seas 435 million years ago, grasping its prey with spiny limbs before devouring it. The fossil is described and details of its lifestyle are published ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Yellowdart
not rated yet Feb 04, 2010
So is that like a tooth equivilent of fingerprints?