New paper describes important advance in imaging of cell death

Jan 29, 2010

For quite some time, the "Holy Grail" in medical imaging has been the development of an effective method to image cell death as a means to intervene early in diseases and rapidly determine the effectiveness of treatments. A new paper by researchers at the University of Notre Dame and the Washington University School of Medicine describes important progress in using a synthetic probe to target dead and dying cells in mammary and prostate tumors in living animals.

Bradley D. Smith, Emil T. Hofman Professor of Chemistry and Biochemistry at Notre Dame, points out that the group of researchers had previously discovered that synthetic zinc (II)-dipicolylamine (Zn-DPA) coordination complexes can selectively target the outer surfaces of anionic (negatively charged) cell membranes. Furthermore, fluorescent versions of these Zn-DPA complexes act as imaging probes that can distinguish dead and dying from healthy cells in a cell culture and also selectively target bacteria in contaminated samples.

The researchers also recently demonstrated that a fluorescent near-infrared probe referred to as PSS-794 can be used to image bacterial infections in mice, indicating that PSS-794 has a notable ability to selectively target anionic cells in living animals.

In the new paper, the researchers describe a significant expansion of the animal imaging capability of PSS-794 by showing that it can target the anionic dead and dying cells within tumors in rat and mouse models. The research is an important step toward the development of probes that could determine, noninvasively, the amount and type of in tumors. Such imaging techniques could help clinicians accurately determine the grade of tumors and the stage of cancers, as well as to measure the effectiveness of treatments.

The researchers also believe that analogous probes can be developed that would allow for deep tissue imaging of cancers in humans.

Smith points out that although the study focused on mammary and prostate tumors, imaging of cell death is broadly useful for treatment of numerous conditions, including cardiovascular disease, neurology, renal disease and even transplant rejection.

Explore further: Dead feeder cells support stem cell growth

More information: The research was described in the Journal of the American Chemical Society.

Related Stories

Toward pinpointing the location of bacterial infections

Jan 02, 2007

In an advance in the emerging field of bacterial imaging, scientists are reporting development of a method for identifying specific sites of localized bacterial infections in living animals. Bradley D. Smith at the University ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.