Decorated with Electric Current, Nanoribbons Align with Expectations

Jan 27, 2010 by Olga Kuchment
Image courtesy Hailin Peng

(PhysOrg.com) -- A bizarre substance predicted to shrink electronics and give quantum physicists a new tabletop toy behaves pretty much as its designers expected.

Last month in , SLAC researchers and their coworkers at Stanford confirmed how electric current moves on tiny ribbons of topological insulator—a material that insulates in its bulk but conducts unusually well on the surface. The work came out of a close collaboration between the research groups of Stanford researcher Yi Cui, and Zhi-Xun Shen and Shoucheng Zhang of the Stanford Institute for Materials and Energy Science.

"Electrical current properties are very difficult to study in a typical bulk sample of these topological insulators," said Shen, director of SIMES, a joint Stanford/SLAC institute. "By making very small nanoribbons we were able to study the unique surface properties."

In extremely thin ribbons of the compound bismuth selenide, the large ratio of edges to innards makes the material's coolest properties easy to detect. Electrons running on the nanoribbon surface flow especially smoothly, act as though they have no mass, and have a set spin—at least when the ribbons are immersed in frigid . In principle, the properties could extend to room temperature.

"It opens up a lot of future applications," said SIMES physicist and co-author Yulin Chen. The material could be a boon to spintronics, a technology that uses electron spin to store information. The applications of include minuscule and sensors, and .

But applications are just part of the substance's appeal. Because of their unique surface properties, the ribbons open new testing ground for physics theories, said co-author Keji Lai, a postdoctoral scholar in Shen's group. The "explosion" of research articles on the topic since these exotic properties were predicted in 2006 speaks to the physicists' excitement.

"We can actually play with table top systems and understand very high level quantum mechanics," Lai said. "This [new result] really paves the way to do that kind of experiment."

The work grew out of a casual conversation between Lai and materials scientist Hailin Peng, previously in the Cui group at the Stanford Department of Materials Science and Engineering and now on faculty at Peking University, China.

"I chatted with him over lunch and told him this family of interesting materials," Lai said. "He came back the next day and said they have an idea how to build them and make them very thin. One week later, he showed me electron microscope images of these materials in ribbon form."

Peng, along with Cui's graduate students Desheng Kong and Stefan Meister, used a well-known technique called "Vapor-Liquid-Solid Synthesis" to grow the ribbons. Bismuth selenide vapor reacts under low pressure and furnace heat with specially prepared gold nanoparticles to form tiny liquid droplets. Once saturated, the liquid begins to sprout solid selenide ribbons, each attached to a gold particle. The diameter of the gold particles dictates the thickness of the nanoribbons.

Making the nanoribbons thinner and thinner—until they are practically all surface—may be the key to seeing their outlandish behavior at room temperature. According to Stanford materials scientist Yi Cui, who still collaborates with Peng, they can now make nanoribbons that are merely 10 atoms thick-- 25 times thinner than those described in December's article.

At such small distances, electrons on the top and bottom of the nanoribbons can cross-talk, according to predictions by coauthors and SIMES researchers Zhang and Xiaoliang Qi. Only theory has explored the bizarre behaviors this communication would cause.

"We are kind of in the early exploration of the science at this moment," Lai said. "In the early days of semiconductors people spent a lot of time just understanding the fundamental science. Once they laid out the physical properties of these materials, the engineers were very powerful at building complicated structures and bringing them to every-day life."

Both Lai and Chen would like to see more materials scientists and engineers pitching in.

"Our job is to motivate and inspire more people to join the field," Chen said. "The more people join this field the faster the progress can be."

Explore further: Thinnest feasible nano-membrane produced

Related Stories

New exotic material could revolutionize electronics

Jun 15, 2009

Move over, silicon -- it may be time to give the Valley a new name. Physicists at the Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have confirmed the existence ...

Super-efficient Transistor Material Predicted

May 15, 2009

(PhysOrg.com) -- New work by condensed-matter theorists at the Stanford Institute for Materials and Energy Science at SLAC National Accelerator Laboratory points to a material that could one day be used to ...

A New Path of Conduction for Future Electronics

Jul 22, 2009

(PhysOrg.com) -- Last month, researchers from SLAC National Accelerator Laboratory made headlines when they revealed experimental evidence of a topological insulator: a material that could revolutionize computer ...

Making magnetic monopoles, and other exotica, in the lab

Feb 05, 2009

Physicist Shou-Cheng Zhang has proposed a way to physically realize the magnetic monopole. In a paper published online in the January 29 issue of Science Express, Zhang and post-doctoral collaborator Xiao-Liang ...

Rice researchers unzip the future

Apr 15, 2009

Scientists at Rice University have found a simple way to create basic elements for aircraft, flat-screen TVs, electronics and other products that incorporate sheets of tough, electrically conductive material.

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...