Researchers discover molecular security system that protects cells from potentially harmful DNA

Jan 10, 2010

Researchers at the University of Minnesota have discovered a molecular security system in human cells that deactivates and degrades foreign DNA. This discovery could open the door to major improvements in genetic engineering and gene therapy technologies.

Led by Reuben Harris, associate professor of biochemistry, molecular biology and in the College of Biological Sciences, the report's findings will be published online by Nature Structural and Molecular Biology on Jan. 10.

In the study, Harris and colleagues show how APOBEC3A, an enzyme found in human immune cells, disables double-stranded foreign DNA by changing cytosines (one of the four main bases in DNA) to uracils (an atypical DNA base). Persisting DNA uracils result in mutations that disable the DNA. In addition, the authors show that other enzymes step in to degrade the uracil-containing foreign DNA and sweep its remains out of the cell.

"Scientists have known for a long time that some human cells take up DNA better than others, but we haven't had good molecular explanations," Harris says. "This is definitely one of the reasons. Foreign DNA restriction is a fundamental process that could have broad implications for a variety of ."

By understanding how the mechanism works, scientists can develop ways to manipulate it to enable more effective methods to swap bad genes for good ones. Harris is also intrigued to learn why the mechanism doesn't affect a cell's own DNA.

The discovery of an analogous foreign DNA restriction mechanism in launched the field of during the 1970s. Once bacterial DNA restriction enzymes were understood, their power was harnessed to cut and paste segments of DNA for a wide variety of therapeutic and industrial purposes.

Explore further: New study offers novel insights into pathogen behavior

Related Stories

Newly found DNA catalysts cleave DNA with water molecule

Aug 16, 2009

Better tools for manipulating DNA in the laboratory may soon be possible with newly discovered deoxyribozymes (catalytic DNA) capable of cleaving single-stranded DNA, researchers at the University of Illinois say.

New evidence that stem cells contain immortal DNA

Jun 27, 2006

EuroStemCell scientists at the Pasteur Institute in Paris have demonstrated one of the body’s most sophisticated ways of regulating the genetic material of stem cells. Their findings, published in Nature Cell Biology, show f ...

Purdue researchers use enzyme to clip 'DNA wires'

Mar 01, 2005

Researchers at Purdue University have attached magnetic "nanoparticles" to DNA and then cut these "DNA wires" into pieces, offering the promise of creating low-cost, self-assembling devices for future computers. ...

Recommended for you

Protection of the mouse gut by mucus depends on microbes

2 hours ago

The quality of the colon mucus in mice depends on the composition of gut microbiota, reports a Swedish-Norwegian team of researchers from the University of Gothenburg and the Norwegian University of Life Sciences in Oslo. ...

Researchers discover protein protecting against chlorine

3 hours ago

Chlorine is a common disinfectant that is used to kill bacteria, for example in swimming pools and drinking water supplies. Our immune system also produces chlorine, which causes proteins in bacteria to lose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.