Using CNTs as infrared sensors

Jan 04, 2010 By Miranda Marquit feature

(PhysOrg.com) -- Semiconductors provide the bases for many different avenues of device research. Indeed, many of the technological devices that are commonplace in our society are reliant on semiconductors. However, as we increasingly explore the opportunities afforded on the nanoscale, new semiconductor materials are needed. One of the more promising semiconducting materials at this level is the carbon nanotube (CNT).

“There is great promise in using a carbon nanotubes for sensors.” Ning Xi tells PhysOrg.com. Xi is John D. Ryder Professor of Electrical and Computer Engineering at Michigan State University, and leads a group that is working on engineering CNT band gaps for use as infrared sensors. Xi worked with Kin Wai Chiu Lai, Carmen Kar Man Fung and Hongzhi Chen at Michigan State, and Tzyh-Jong Tarn at Wasington University in St. Louis to develop a process that is described in : “Engineering the band gap of for infrared sensors.” This project is supported by the Office of Naval Research.

“For , the band gap is one of the most important parameters,” Xi explains. “The band gap represents how much energy is needed to move an electron. In order for the electron to move, it has to be able to jump over this gap. You have to change the composition of the material in order to change the band gap, and this is very difficult. People have been trying all kinds of ways to do this for years.”

As far as sensors are concerned, using CNTs with different band gaps can help pinpoint different types of light. “ has a certain ,” Xi says. “You need a certain band gap to detect this. If you have nanotubes with different band gaps, you can design a sensor to detect different spectrum of infrared. And since these nanotubes are so small, arraying different CNTs with different band gaps is possible.”

In order to engineer the band gaps so that they can provide the semiconducting sensors, Xi and his colleagues created a process of stripping away layers of multi-wall CNTs. “The interesting thing with carbon nanotubes is that the band gap depends on the radius. If you have a multi-wall nanotube, you can peel away the outer layer to change the radius. And that changes the band gap as well. Instead of changing the semiconductor material, it is possible to tune the band gap to the proper value, one step at a time.”

Xi and his colleagues and collaborator developed a process that allows them to use feedback control to remove layers of multi-wall CNTs. “We were able to do this experimentally, with relative ease compared to earlier processes for band gap tuning,” Xi points out. “We were able to generate different types of carbon nanotubes with different band gaps, and able to detect multiple wavelengths of light across a spectrum.”

Being able to tune a without having to make a new material is a big step forward in semiconductors, and Xi hopes that this process can be used for other purposes. “We are primarily interested in infrared nanosensors, but there could be other applications for this technology.”

Explore further: Using strong lasers, investigators observe frenzy of electrons in a new material

More information: Lai, et al., “Engineering the band gap of carbon nanotube for infrared sensors,” Physical Review Letters (2009). Available online: link.aip.org/link/?APPLAB/95/221107/1

4.4 /5 (16 votes)

Related Stories

Boron Nitride Nanotubes More Amenable Than Carbon

May 17, 2004

Carbon nanotubes get a lot of press attention, but boron nitride (BN) nanotubes might have superior properties. K.H. Khoo and his colleagues form University of California performed first-principles calculations on BN ...

Magnetic Forces May Turn Some Nanontubes Into Metals

May 25, 2004

Research Documents First Instance of Band-gap Shrinkage in a Semiconductor A new study, published in today’s issue of the journal Science, finds that the basic electrical properties of semiconducting carbon nanotubes c ...

Highlight: Solar - Bridging the gap

Dec 10, 2009

(PhysOrg.com) -- Titanium dioxide, the same inexpensive white pigment that protects us from sunburns, can be converted into a material that absorbs sunlight and could greatly increase the efficiency of solar energy cells.

Carbon nanotube avalanche process nearly doubles current

Feb 09, 2009

(PhysOrg.com) -- By pushing carbon nanotubes close to their breaking point, researchers at the University of Illinois have demonstrated a remarkable increase in the current-carrying capacity of the nanotubes, ...

Recommended for you

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 0

More news stories

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Polymer microparticles could help verify goods

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.