Researchers Create New Way To Locate Big Genetic Variants

Dec 28, 2009

(PhysOrg.com) -- Yale University researchers, analyzing hundreds of billions of bits of genetic information, have collated and standardized 2,000 signposts that mark the boundaries of large blocks of human genomic variants.

This library of genomic “breakpoints’’ was published in the Dec. 27th edition of .

sequencing, or the ordering of the billions of nucleotides that make up the genomes of living organisms, has been a key tool in modern biological research. The quest for variants that change the function of genes began by first focusing on changes, called single (SNPs) in a single genetic letter (or nucleotide). Advances in sequencing technology now enable scientists to decode the genome more rapidly and efficiently, and have paved the way for identifying large block variants, called structural variants or SVs.

These variants cause more nucleotide differences between individuals than SNPs. Some SVs, in fact, involve thousands of base pairs and can wipe out whole genes or create additional copies of other genes that can have major effects on an organism. SVs are sometimes associated with diseases such as cancer and HIV and also with developmental disorders.

Graduate students Hugo Lam and Jasmine Mu and their colleagues in the research team led by Mark Gerstein, professor of molecular biophysics and biochemistry, computer science, and bioinformatics, analyzed data from recent personal genomic studies, such as the 1000 Genomes Project, to identify precise “breakpoint” locations of SVs.

They have shown how this library of breakpoints can help researchers rapidly scan for and characterize SVs in a newly sequenced personal genome. In fact, the sequences in the library can even be put on a commercial SNP chip, which can then be used to assess SVs quickly in population studies.

Explore further: The origin of the language of life

add to favorites email to friend print save as pdf

Related Stories

Johns Hopkins to participate in 1000 Genomes Project

Jan 22, 2008

Researchers at the McKusick-Nathans Institute of Genetic Medicine (IGM) at Johns Hopkins will join other national and international scientists in the 1000 Genomes Project, an ambitious effort that will involve sequencing ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.