Simplest bacteria unravelled at the cellular level

Dec 28, 2009

Even the simplest cell appears to be far more complex than researchers had imagined. In a series of three articles in the journal Science, researchers including Vera van Noort at the European Molecular Biology Laboratory (EMBL) in Heidelberg, have provided a complete picture of a single cell for the first time. The study has provided important new insights for bacterial biology. For instance, prokaryotes - cellular organisms without a cell nucleus - seem to be more similar to eukaryotes than was previously thought. Without this type of basic knowledge about the operation of single cells, it is impossible to understand biology at the smallest levels.

The researchers took Mycoplasma pneumoniae, a small consisting of a single cell, as their model cell. In humans, this bacteria causes atypical . It is one of the smallest prokaryotes that can multiply itself without using the cell mechanism of a host.

Uniquely, Van Noort and her colleagues examined the function of the cell at different levels. These levels had previously been studied separately, but they were now brought together for the first time. Studying biological systems in this way - as a whole - is the basis of systems biology. This discipline asks questions, for example, about the molecular anatomy of a cell in order to thoroughly understand the functioning of an organism as a whole.

The bacteria appeared to be assembled in a far more complex way than had been thought. The researchers studied the proteome, the concentration of certain proteins in the cell, and the metabolome, the concentration of substances which ensure that the proteins can do their jobs. At these two different levels, many molecules appeared to have several functions. For example, the metabolic enzymes catalysed several unrelated reactions. and the proteins in the proteome were often active in more than one protein complex. The bacteria appeared to physically connect protein complexes that were responsible for the cell mechanism of two successive steps in a biological process.

What is remarkable is that the regulation of the transcriptome - the collection of RNA that deals with copying genetic information stored in the DNA - appeared to be far more similar to that of eukaryotes than had previously been thought. A large proportion of the transcripts produced from the bacteria’s DNA were, just as in eukaryotes, not converted into proteins. The prokaryotes include simple life forms such as bacteria, whereas eukaryotes include higher organisms such as plants and mammals. That is why the researchers selected this bacterium: complex enough to survive on its own but still small enough and simple enough to serve as a suitable model of a single cell.

Another surprising result of the research is that, despite its very small genome, the bacterium is extremely flexible: it adapts its metabolism to major changes in its environment. It can therefore rapidly adapt to the available food sources and stress factors, just like the more complex eukaryotes.

Different research groups examined the cell at three levels. One team described the bacteria’s transcriptome and identified all of the RNA molecules (transcripts) made from the DNA in different circumstances. DNA ultimately supplies the proteins via RNA. Another team determined all of the metabolic reactions in the cell, i.e. the metabolome. A third team identified each multi-protein complex produced by the bacteria, and thus determined the .

Explore further: Researchers develop computational model to simulate bacterial behavior

Related Stories

Bacteria are models of efficiency

Feb 04, 2009

The bacterium Escherichia coli, one of the best-studied single-celled organisms around, is a master of industrial efficiency. This bacterium can be thought of as a factory with just one product: itself. It exists to make c ...

Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Life's origins were easier than was thought

Sep 15, 2005

An international team of scientists, leaded by Universitat Autònoma de Barcelona researchers, has discovered that RNA early molecules were much more resistant than was thought until now. According to the conclusions of the ...

New Mathematical Model Evaluates Efficiency of E. Coli

Feb 04, 2009

The bacterium Escherichia coli, one of the best-studied single-celled organisms around, is a master of industrial efficiency. This bacterium can be thought of as a factory with just one product: itself. It exists to make c ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

12 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

15 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

16 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.