Brown dwarf pair mystifies astronomers

Dec 21, 2009
Brown dwarf pair mystifies astronomers
Artist's rendition of a brown dwarf and its moon orbiting a triple star system. Image: NASA

(PhysOrg.com) -- Two brown dwarf-sized objects orbiting a giant old star show that planets may assemble around stars more quickly and efficiently than anyone thought possible, according to an international team of astronomers.

"We have found two brown dwarf-sized masses around an ordinary star, which is very rare," said Alex Wolszczan, Evan Pugh professor of astronomy and astrophysics, Penn State and lead scientist on the project.

The star, BD +20 2457, is a K2 giant -- an old bloated star nearing the end of its life. Seeing a pair of around a K-type giant is a first for astronomers and offers a unique window into how they can be produced. The researchers from the Torun Center for Astronomy, Poland and the Center for Exoplanets and Habitable Worlds, Penn State report their findings in the current issue of the Astrophysical Journal.

Brown dwarfs are dim, elusive objects that straddle the dividing line between planets and stars. They are too massive to be planets, but not massive enough to generate the fusion-powered energy of a star. These stellar cousins represent a kind of "missing link" between planets and , but little is known about how they are made.

"If we find one brown dwarf, we are not sure where it came from," Wolszczan explained. "It could be either from the process of or it could be a direct product of ."

Seeing two of them around a parent star means they must have originally formed from the enormous supply of raw materials that surrounded the star when it was young. Astronomers call this thick, solar system-sized pancake of gas and dust the "circumstellar disk."

"If that is the case," he continued, "then if we add up the minimum masses of these two objects, we know the disk had to be extremely massive."

To find these faint companions, the astronomers used the High Resolution Spectrograph on the Hobby-Eberly Telescope in west Texas to split up the light of BD +20 2457. This technique is similar to the way a prism breaks light into a rainbow -- spectrum -- of colors. They looked for shifts in color of certain features in the spectrum, called spectral lines, as the dwarfs moved around the star and caused the star to wobble back and forth from their gravitational tugs.

When the brown dwarfs' gravitational influence causes BD +20 2457 to move towards Earth slightly, its spectral lines decrease in wavelength, becoming slightly bluer. As it moves away, the wavelengths increase, becoming slightly redder. By noting how quickly and strongly the spectral lines shift, astronomers can infer the objects' masses, as well as the sizes and shapes of their orbits.

The scientists determined that the two companions are at least 21 and 13 times the mass of Jupiter. Therefore, they are likely to exceed the minimum mass of a brown dwarf, 13 times the mass of Jupiter. They are separated from their star by about 1.5 and 2 times the distance between the Earth and the sun and complete a "year" in 380 and 622 days, respectively.

What is even more unusual is the timescale involved in making these brown dwarfs.

Several million years ago, BD +20 2457 was on the "main sequence," the stage in stellar evolution where the star produced light by burning its hydrogen fuel, much like our sun does now. Except this star, three times the mass of the sun, was much hotter and more luminous.

"The intense radiation of this star would have heated up and evaporated anything that was still forming around it," Wolszczan said. "The fact that these dwarfs are still here means that they had to accumulate a lot of material very quickly and be fully formed by the time the star 'switched on.' "

A star like BD +20 2457 takes about 10 million years to form and enter the main sequence. As a rough estimate, in order keep up with their , the dwarfs would have to accrue as much mass as the Earth's moon every year.

"The lesson from this is that a combination of physical mechanisms may be responsible for making brown dwarfs," Wolszsczan said. "Instead of just growth by accretion (the steady accumulation of material), the dwarfs' own gravity may help them gather more mass and speed up their formation."

Explore further: Can astronomy explain the biblical Star of Bethlehem?

add to favorites email to friend print save as pdf

Related Stories

Smashing young stars leave dwarfs in their wake

Jun 09, 2006

Astronomers have discovered that the large disks of gas and dust around young stars will fragment if two young stars pass close to each other and form smaller brown dwarfs stars with disks of their own.

The star, the dwarf and the planet

Oct 19, 2006

Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly ...

Brown Dwarfs Don't Hang Out With Stars

Jan 05, 2009

(PhysOrg.com) -- Brown dwarfs, objects that are less massive than stars but larger than planets, just got more elusive, based on a study of 233 nearby multiple-star systems by NASA's Hubble Space Telescope. ...

Astronomers Weigh Adopted Twin Brown Dwarfs

Mar 29, 2006

Astronomers for the first time have precisely measured the mass of a pair of elusive brown dwarfs, and the data from the twin objects - not quite big enough to be stars, but too large to be planets – match well with theoretical ...

White dwarf and ultra-cool dwarf keep their distance

Apr 18, 2007

Scientists from the University of Hertfordshire have discovered a rare binary system consisting of a white dwarf, a Sun-like star that has reached the end of its life, and an ultra-cool dwarf, which is the smallest kind of ...

Tiny Brown Dwarf's Disk May Form Miniature Solar System

Feb 09, 2005

Using the Spitzer Space Telescope, a team of astronomers led by Kevin Luhman (Harvard-Smithsonian Center for Astrophysics) has discovered a protoplanetary disk around a surprisingly low-mass brown dwarf. This remarkable finding ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

16 hours ago

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

17 hours ago

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (2) Dec 28, 2009
Congratulations, Alex, on another possibly major discovery!

I doubt if this will be as important as the 1992 discovery of rocky planets orbiting a pulsar by yourself and Dale Frail [“A Planetary System around the Millisecond Pulsar PSR 1257+12”, Nature 355 (1992) 145].

One technical comment: Neutron repulsion is the primary energy source of the Sun, not fusion, and Hydrogen is a waste product generated by neutron decay.

It is therefore misleading to report that brown dwarfs are "not massive enough to generate the fusion-powered energy of a star."

Again, congratulations!

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.