Next generation lens promises more control

Dec 20, 2009
A close-up view of the new lens. Credit: Duke University

(PhysOrg.com) -- Duke University engineers have created a new generation of lens that could greatly improve the capabilities of telecommunications or radar systems to provide a wide field of view and greater detail.

But the lens they fashioned doesn't look anything like a lens. While traditional lenses are made of clear substances - like glass or plastic - with highly polished surfaces, the new lens looks more like a miniature set of tan Venetian blinds. Yet its ability to focus the direction of electromagnetic rays passing through it dramatically surpasses that of a conventional lens, the engineers say.

The latest advance was made possible by the ability to fabricate exotic known as . The metamaterial in these experiments is not so much a single substance, but the entire man-made structure which can be engineered to exhibit properties not readily found in nature.

The prototype lens, which measures four inches by five inches and less than an inch high, is made up of more than 1,000 individual pieces of the same fiberglass material used in circuit boards and is etched with copper. It is the precise arrangement of these pieces in parallel rows, that directs the rays as they pass through.

"For hundreds of years, lens makers have ground the surfaces of a uniform material in such a way as to sculpt the rays as they pass through the surfaces," said Nathan Kundtz, post-doctoral associate in electrical and computer engineering at Duke's Pratt School of Engineering. "While these lenses can focus rays extremely efficiently, they have limitations based on what happens to the rays as they pass through the volume of the lens.

"Instead of using the surfaces of the lens to control rays, we studied altering the material between the surfaces," Kundtz said. "If you can control the volume, or bulk, of the lens, you gain much more freedom and control to design a lens to meet specific needs."

The results of his experiments, which were conducted in the laboratory of senior researcher David R. Smith, the William Bevan Professor of Electrical and Computer Engineering, appeared as an advanced online publication of the journal . This is the first demonstration of what was thought to be theoretically possible.

Recognizing the limitations of traditional lenses, scientists have long been investigating other options, including those known as gradient index (GRIN) lenses. These are typically clear spheres, and while they have advantages over traditional lenses, they are difficult to fabricate and the focus point is spherical. Additionally, because most sensing systems are oriented in two dimensions, the spherical image doesn't always translate clearly on a flat surface.

The new lens, however, has a wide angle of view, almost 180 degrees, and because its focal point is flat, it can be used with standard imaging technologies. The latest experiments were conducted with microwaves, and the researchers say it is theoretically possible to design lenses for wider frequencies.

"We've come up with what is in essence GRIN on steroids," said Smith, whose team used similar metamaterials to create one of the first "cloaking" devices in 2006. "This first in a new class of lenses offers tantalizing possibilities and opens a whole new application for metamaterials.

"While these experiments were conducted in two dimensions, the design should provide a good initial step in developing a three-dimensional lens," Smith said. "The properties of the metamaterials we used should also make it possible to use infrared and optical frequencies."

The researchers say a single metamaterial could replace traditional optical systems requiring vast arrays of lenses and provide clearer images. They could also be used in large-scale systems such as radar arrays to better direct beams, a task not possible for traditional lenses, which would need to be too large to be practical.

Explore further: Wild molecular interactions in a new hydrogen mixture

add to favorites email to friend print save as pdf

Related Stories

Engineers give industry a moth's eye view

Nov 26, 2007

When moths fly at night, their eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface ...

Next generation cloaking device demonstrated

Jan 15, 2009

A device that can bestow invisibility to an object by "cloaking" it from visual light is closer to reality. After being the first to demonstrate the feasibility of such a device by constructing a prototype ...

Liquid lens creates tiny flexible laser on a chip

May 11, 2009

(PhysOrg.com) -- Like tiny Jedi knights, tunable fluidic micro lenses can focus and direct light at will to count cells, evaluate molecules or create on-chip optical tweezers, according to a team of Penn State engineers. ...

Writing patterns, logos and lettering in light

Oct 01, 2008

(PhysOrg.com) -- Logos and lettering can be written in light using freeform lenses. But how does the surface of the lens have to be structured in order to focus the light in the shape of a specific pattern? ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

9 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

10 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

11 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

resinoth
not rated yet Dec 20, 2009
please go into detail of focusing mechanism.