Research in aircraft control systems and robotics helps improve flight safety

Dec 18, 2009 By Dana Yates
Guangjun Liu, professor in aerospace engineering, builds robots for the aerospace industry, space exploration and the manufacturing sector.

( -- At first blush, it may not seem like robots and aircraft control systems have anything in common. When you put them together, however, you arrive at the core of Guangjun Liu’s unique research expertise.

A professor in aerospace engineering, Liu is a Tier 2 Canada Research Chair in Control Systems and Robotics. As part of his work, Liu is solving problems that confound the aerospace industry and negatively affect the success of space missions. Along the way, he is helping to maintain Canada’s position as an international leader in robotics and .

During the last two years, his research team has had 17 research papers published in peer-reviewed academic journals. Those articles provide unmistakable proof of the groundbreaking work happening in Liu’s lab.

There, industry-supported research is helping to build modular, reconfigurable and expandable robots from scratch. Compact, light and versatile, those robots have multiple applications and promise to make a major contribution to the aerospace industry, space exploration and the manufacturing sector. For example, in addition to lifting heavy payloads, the robots in Liu’s lab will ultimately be able to handle hazardous materials and carry out dangerous rescue and security operations.

Liu is working on two projects aimed at improving on-board control system for aircraft. The first initiative involves “bleed air” - compressed air that’s taken from jet engines to provide cool, fresh air to the cabin. Liu is studying ways to make this system more efficient, thereby reducing drag and using less fuel.

Liu’s second project, sponsored by Honeywell, seeks to improve on-board electrical power systems. Those systems are used in flight control, cabin-environment control, engine and flight management, computer and communication, passenger services and in-flight entertainment.

With the growing use of electrical systems in aircraft, the importance of Liu’s work cannot be overstated. “After years of use, electrical systems can show signs of aging,” he explains. “This can lead to electric arcs and short circuits.”

In fact, arcing was implicated in the 1998 crash of Swiss Air Flight 111. The horrific accident, which happened mere kilometres off the shore of Peggy’s Cove, N.S., killed all 229 passengers.

To help avoid future tragedies, Liu’s team is developing innovative techniques to identify and diagnose problems in electrical systems. The research is expected to improve the safety and reliability of aircraft, and to help maintenance workers better determine which equipment requires upkeep at what time.

In addition to his research successes, Liu also takes pride in his lab-based teaching responsibilities. Twenty-five of his former graduate students now work for such well-known aerospace companies as Honeywell, Bombardier, and Pratt & Whitney.

“It’s important to train students,” Liu says. “They will make up the next generation of aerospace engineers and researchers - and they will go on to find their own research interests.”

Explore further: Comfortable climate indoors with porous glass

add to favorites email to friend print save as pdf

Related Stories

Engineering modifications enhance aircraft safety

Feb 23, 2007

Modifications of an aircraft control system developed by University of Leicester engineers, have been tested by flight test engineers from the German Aerospace Center (DLR) and German Air Force test pilots.

Can't Make it to a Meeting? Send a Computer Instead

Aug 06, 2009

( -- If you’ve ever wished you had an assistant to attend meetings with you, take notes and produce a concise summary, then you’ll be pleased to know that UT Dallas computer scientist Yang ...

Recommended for you

Tesla says decision on battery factory months away

2 hours ago

(AP)—Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

21 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

22 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

22 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

22 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0