NASA NuSTAR Telescope Being Built at Nevis

Dec 17, 2009 by Anna Kuchment
NuSTAR with primary instrument components labeled. Image credit: NASA

(PhysOrg.com) -- It's an unlikely place to build a NASA telescope: a leafy estate in Irvington, N.Y., that once belonged to the son of Alexander Hamilton. Inside a hangar-like building on the site, which is home to Columbia’s Nevis Laboratories for experimental physics, Charles Hailey is assembling mirrors for NuSTAR, the most sensitive X-ray telescope ever constructed.

Its mission: to conduct a census of , map exploding stars known as supernovae and observe other dynamic events in space.

“NuSTAR will open up a whole new window into the universe,” says Hailey, the Pupin Professor of Physics and co-director of Columbia’s astrophysics lab.

X-rays, a high-energy form of light, help astrophysicists observe phenomena that are typically invisible to the naked eye. Black holes, for example, hide behind clouds of dust and gas, and their centers of gravity are so strong that optical light cannot escape. Black holes do, however, emit X-rays, which can penetrate dust and gas, making them visible to NuSTAR.

Compared with Chandra, the X-ray mission that launched in 1999, NuSTAR will record a much higher energy band. The stronger the X-rays, the denser the matter they can penetrate, enabling NuSTAR to find black holes and other cosmic events that have previously escaped detection.

Building such a sensitive instrument requires patience and precision. Starting this month and working until spring, Hailey will assemble NuSTAR’s “eyes” out of 4,000 sheets of glass, some as small as bookmarks, others the size of a computer screen. Each strip of glass, akin to the type used for laptop and cell phone displays, is curved according to a fast, inexpensive method that Hailey pioneered 10 years ago. Called thermal glass slumping, the technique involves placing the flat sheets into a hot oven until they melt. The glass is then shaped to curved molds beneath it. Thermal glass slumping will help bring NuSTAR’s cost to about one-tenth the price of Chandra, which cost $2 billion.

Once the pieces are slumped, they are shipped to Copenhagen, where scientists coat them with a reflective material before sending them back to Nevis. Hailey will then layer the curved glass sheets into concentric rings—12 to 24 sheets per ring, 130 rings in all. The result: two cones that will be mounted onto the finished body of the telescope in California.

NuSTAR, which stands for nuclear spectroscopic telescope array, is scheduled for launch in August 2011 from Kwajalein Island in the Pacific Ocean, one of the Marshall islands. The project’s principal investigator, Fiona Harrison of the California Institute of Technology, is responsible for building the ’s detectors, which will record the images collected by Hailey’s optics. Components assembled by collaborators at the University of California, Berkeley and other institutions include shields to protect NuSTAR from meteors; a deployable mast; and the launch vehicle, a lightweight Pegasus XL rocket.

Hailey, who dislikes travel, will watch the launch on NASA TV from his office, but distance won’t lessen the thrill of watching NuSTAR lift off into the sky.

“It’s enormously exciting,” he says. “I can tell you that we’ll discover black holes of all masses, supernova remnants and young stars. But what really sends chills up my spine are the things we’ll discover that I can’t conceive of yet, that no one can envision.”

Explore further: A guide to the 2014 Neptune opposition season

Provided by The Earth Institute at Columbia University

5 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

NASA Approves X-ray Space Mission

Sep 07, 2009

NASA recently confirmed that the Nuclear Spectroscopic Telescope Array, or NuSTAR, mission will launch in August 2011.

Small Explorer Mission to Set Solar System Boundaries

Jan 27, 2005

A satellite that will make the first map of the boundary between the Solar System and interstellar space has been selected as part of NASA's Small Explorer program. The Interstellar Boundary Explorer (IBEX) mission will be ...

NASA Observatory Confirms Black Hole Limits

Feb 16, 2005

The very largest black holes reach a certain point and then grow no more. That's according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists also discovered previously ...

Searching the heavens -- GLAST

May 01, 2008

A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes. It could even ...

Chandra finds black holes are 'green'

Apr 24, 2006

Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes ...

Recommended for you

Mysteries of space dust revealed

5 hours ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

10 hours ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

Aug 28, 2014

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 0