Supernova explosions stay in shape

Dec 17, 2009
A new study of images from Chandra shows that the symmetry of the supernova remnants, or lack thereof, reveals how the star exploded. G292.0+1.8 (left) represents a type of supernova where a massive star collapses on itself. The shape of this type of remnant is relatively asymmetric. The Kepler supernova remnant (right) is from a family of supernovas produced by a thermonuclear explosion on a white dwarf. Kepler and other remnants like it are more symmetrical in shape than G292 and its brethren. Credit: NASA/CXC/UCSC/L. Lopez et al.

At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same.

A new study of images from NASA's on - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed.

"It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way."

Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas.

Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the and a neighboring galaxy, the .

For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances.

On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes.

"If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off."

Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed.

Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant.

"We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again."

While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of that generated them.

Explore further: Astronomers measure weight of galaxies, expansion of universe

More information: The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters.

add to favorites email to friend print save as pdf

Related Stories

X-ray Evidence Supports Possible New Class Of Supernova

Jan 04, 2007

Evidence for a significant new class of supernova has been found with NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton. These results strengthen the case for a population of stars ...

Action replay of powerful stellar explosion

Mar 20, 2008

Astronomers have made the best ever determination of the power of a supernova explosion that was visible from Earth long ago. By observing the remnant of a supernova and a light echo from the initial outburst, ...

Chandra Spies Cosmic Fireworks

Jul 14, 2006

The Chandra X-ray Observatory has captured the remains of four supernovas in the nearby Large Magellanic Cloud, showing multi-million-degree gas that has been heated by shock waves from the explosions.

Supernova remnant is an unusual suspect

Jun 09, 2009

A new image from NASA's Chandra X-ray Observatory shows a supernova remnant with a different look. This object, known as SNR 0104-72.3 (SNR 0104 for short), is in the Small Magellanic Cloud, a small neighboring ...

Unusual shape of exploded star puzzles scientists

Jun 17, 2009

Penn State astronomers have used NASA's Chandra X-ray Observatory to produce a new image of a ghostly exploded star with an unusual shape in a galaxy near the Milky Way. Astronomers think the object may be ...

Detective astronomers unearth hidden celestial gem

Jun 10, 2008

ESA’s orbiting X-ray observatory XMM-Newton has re-discovered an ignored celestial gem. The object in question is one of the youngest and brightest supernova remnants in the Milky Way, the corpse of a star ...

Recommended for you

Astronomers measure weight of galaxies, expansion of universe

6 hours ago

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

17 hours ago

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

Jul 28, 2014

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

frajo
2.5 / 5 (2) Dec 17, 2009
models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed.
This makes sense only if we presuppose SN-Ia to be symmetric events. OTOH if there should be asymmetric SN-Ia events they'll never be detected this way.
omatumr
4 / 5 (1) Dec 22, 2009
The observed symmetry also depends on the angle of observation.

In 1976 two well-known astrophysicists insisted that stars always explode isotropically, never axially. The Hubble telescope later found that axial explosions are commonplace.

Axial explosion appear isotropic if viewed from above, but axial if viewed from the side.

With kind regards,
Oliver K. Manuel