Argonne scientists use bacteria to power simple machines (w/ Video)

Dec 16, 2009
Diagram tracking the movement of gears turned by the bacteria.

(PhysOrg.com) -- Scientists at the U.S. Department of Energy's Argonne National Laboratory and Northwestern University, Evanston, have discovered that common bacteria can turn microgears when suspended in a solution, providing insights for design of bio-inspired dynamically adaptive materials for energy.

"The gears are a million times more massive than the bacteria," said physicist and principal investigator Igor Aronson. "The ability to harness and control the power of bacterial motions is an important requirement for further development of hybrid biomechanical systems driven by microorganisms."

The microgears with slanted spokes, produced in collaboration with Northwestern University, are placed in the solution along with common aerobic bacteria, . Andrey Sokolov of Princeton University and Igor Aronson from Argonne, along with Bartosz A. Grzybowski and Mario M. Apodaca from Northwestern University, discovered that the bacteria appear to swim around the solution randomly, but occasionally the organisms will collide with the spokes of the gear and begin turning it in a definite direction.

This video is not supported by your browser at this time.

A few hundred bacteria are working together in order to turn the gear. When multiple gears are placed in the solution with the spokes connected like in a clock, the bacteria will begin turning both gears in opposite directions and it will cause the gears to rotate in synchrony for a long time.

"There exists a wide gap between man-made hard materials and living tissues; , unlike steel or plastics, are "alive." Biomaterials, such as live skin or tissue, consume energy of the nutrients to self-repair and adapt to their environment," Aronson said. "Our discovery demonstrates how microscopic swimming agents, such as bacteria or man-made nanorobots, in combination with hard materials can constitute a 'smart material' which can dynamically alter its microstructures, repair damage, or power microdevices."

The speed at which the gears turn can also be controlled through the manipulation of in the suspended liquid. The bacteria need oxygen in order to swim and by decreasing the amount of oxygen available, they will begin to slow down. If you eliminate the oxygen completely, the bacteria go into a type of "sleep" and stop completely.

Once the oxygen is reintroduced into the system, the "wake up" and begin swimming once again.

A paper on this subject is published in Proceedings of the National Academy of Sciences.

Explore further: Selenium compounds boost immune system to fight against cancer

add to favorites email to friend print save as pdf

Related Stories

Bacteria mix it up at the microscopic level

Nov 02, 2009

(PhysOrg.com) -- Many hands -- or many flagella -- make light work. In studies of the motion of tiny swimming bacteria, scientists at the U.S. Department of Energy's Argonne National Laboratory found that ...

Researchers develop technique for bacteria crowd control

Apr 17, 2007

A surprising technique to concentrate, manipulate, and separate a wide class of swimming bacteria has been identified through a collaboration between researchers at Argonne National Laboratory, Illinois Institute ...

Bacterium found to have strange magnetic personality

Feb 17, 2006

Researchers led by an MIT graduate student have discovered a bacterium that is a magnetic misfit of sorts. Magnetotactic bacteria contain chains of magnetic iron minerals that allow them to orient in the Earth's ...

Recommended for you

Molecules that came in handy for first life on Earth

Nov 24, 2014

For the first time, chemists have successfully produced amino acid-like molecules that all have the same 'handedness', from simple building blocks and in a single test tube. Could this be how life started. ...

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.