Highlight: Exploiting strain fields

Dec 10, 2009

(PhysOrg.com) -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

In a letter published in Nature Physics, lead author Thomas "Zac" Ward of Oak Ridge National Laboratory describes how electronic phase separation can be controlled through strain fields in a material. A strain field is one in which the material is stretched more in one direction than another.

"By doing this, we can force metallic regions to spontaneously form along the direction of stretching," Ward said. "This means that along the stretched direction the resistance is low while along the unstretched direction the resistance is very high."

Ward and co-authors John Budai, Zheng Gai, Jonathan Tischler, Lifeng Yin and Jian Shen cite differences in in some cases reaching 20,000 percent.

"Practically, this discovery means that we are closer to controlling complex electronic correlations that could one day revolutionize the in the form of new multi-functional, lower energy-consuming devices," Ward said. This research was funded by the Department of Energy's Office of Basic Energy Sciences.

More information: Elastically driven anisotropic percolation in electronic phase-separated manganites, Nature Physics 5, 885 - 888 (2009), doi:10.1038/nphys1419

Provided by Oak Ridge National Laboratory (news : web)

Explore further: Technique simplifies the creation of high-tech crystals

add to favorites email to friend print save as pdf

Related Stories

Stretching opens up possibilities for graphene

Sep 28, 2009

(PhysOrg.com) -- Researchers say they have found a simple way to improve the semiconducting properties of the world’s thinnest material - by giving it a good tug.

Lighting the Way to Better Nanoscale Films

Aug 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may ...

Recommended for you

IHEP in China has ambitions for Higgs factory

10 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

12 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

13 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

16 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0