Highlight: Exploiting strain fields

Dec 10, 2009

(PhysOrg.com) -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

In a letter published in Nature Physics, lead author Thomas "Zac" Ward of Oak Ridge National Laboratory describes how electronic phase separation can be controlled through strain fields in a material. A strain field is one in which the material is stretched more in one direction than another.

"By doing this, we can force metallic regions to spontaneously form along the direction of stretching," Ward said. "This means that along the stretched direction the resistance is low while along the unstretched direction the resistance is very high."

Ward and co-authors John Budai, Zheng Gai, Jonathan Tischler, Lifeng Yin and Jian Shen cite differences in in some cases reaching 20,000 percent.

"Practically, this discovery means that we are closer to controlling complex electronic correlations that could one day revolutionize the in the form of new multi-functional, lower energy-consuming devices," Ward said. This research was funded by the Department of Energy's Office of Basic Energy Sciences.

More information: Elastically driven anisotropic percolation in electronic phase-separated manganites, Nature Physics 5, 885 - 888 (2009), doi:10.1038/nphys1419

Provided by Oak Ridge National Laboratory (news : web)

Explore further: Study helps uncover mechanism behind solid-solid phase transitions

add to favorites email to friend print save as pdf

Related Stories

Lighting the Way to Better Nanoscale Films

Aug 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may ...

Recommended for you

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

User comments : 0