NASA's WISE Set to Blast Off and Map the Skies

Dec 09, 2009
The Wide-field Infrared Survey Explorer mission will survey the entire sky in a portion of the electromagnetic spectrum called the mid-infrared with far greater sensitivity than any previous mission or program ever has.

(PhysOrg.com) -- The countdown clock is ticking, with just days to go before the Wide-field Infrared Survey Explorer, or WISE, rockets into space on a mission to map the entire sky in infrared light.

NASA's newest spacecraft is currently perched atop a United Launch Alliance Delta II rocket at Vandenberg Air Force Base, north of Santa Barbara, Calif. It is scheduled to roar into space at dawn on Dec. 11, at 6:09:33 a.m. PST (9:09:33 a.m. EST), on a short journey to its final Earth-circling orbit 525 kilometers (326 miles) overhead.

After a one-month checkout, the mission will spend the next nine months mapping the cosmos in infrared light. It will cover the whole sky one-and-a-half times, snapping millions of pictures of everything from near-Earth asteroids to faraway galaxies bursting with new stars.

"The last time we mapped the whole sky at these particular was 26 years ago," said Edward (Ned) Wright of UCLA, who is the principal investigator of the mission. "Infrared technology has come a long way since then. The old all-sky infrared pictures were like impressionist paintings -- now, we'll have images that look like actual photographs."

At , the main Delta II engine and three solid-motor boosters will ignite, providing a total liftoff thrust of more than 1,812,000 newtons (407,000 pounds). The rocket will tilt toward the south, cross the California coastline and head out over the Pacific Ocean. At one minute and 39 seconds after launch, the three spent boosters will fall away from the rocket. Two minutes and 45 seconds later, the main engine will cut off, and 14 seconds later, the vehicle's second stage will ignite. At four minutes and 56 seconds after liftoff, the "fairing" covering the satellite will split open like a clamshell and fall away.

The second stage of the rocket will then cut off, reigniting again 52 minutes after launch. It will shut down a second time and then, at about 55 minutes after launch, the spacecraft will reach its final orbit and separate from the rocket. Engineers expect to pick up a signal from WISE anywhere from about one to 10 minutes after separation.

The next major event will occur about 20 minutes after separation -- the valves on the spacecraft's cryostat will automatically open. The cryostat houses and chills the telescope and infrared detectors with tanks of frozen hydrogen. Valves on the cryostat are opened after to allow boiled-off hydrogen to escape, thereby preventing the instrument from warming up.

"It is important to relieve the pressure due to the warming hydrogen as soon as possible," said William Irace, the mission’s project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "By venting the hydrogen to space, we cool our instrument down to extremely low temperatures so that the eyes of WISE won't be blinded by their own heat."

After the spacecraft is checked out and calibrated, it will begin the task of surveying the whole sky. This will take about six months, after which the spacecraft will begin to sweep the sky a second time, covering about one-half before the frozen coolant runs out. The mission's primary lifetime is expected to be about 10 months.

The closest of the mission’s finds will be asteroids and comets with orbits that come relatively close to Earth's path around the sun. These are called near-Earth objects. The infrared explorer will provide size and composition information about hundreds of these objects, giving us a better idea of their diversity. How many are dark like coal, and how many are shiny and bright? And how do their sizes differ? The mission will help answer these questions through its infrared observations, which provide information that can't be obtained using visible-light telescopes.

"We can help protect our Earth by learning more about the diversity of potentially hazardous asteroids and comets," said Amy Mainzer, deputy project scientist for the mission at JPL.

The farthest of the mission's targets are powerful galaxies that are either churning out loads of new stars or dominated by voracious black holes. These galaxies are shrouded in dust, and often can't be seen in visible light. WISE will expose millions, and may even find the most energetic, or luminous, galaxy in the universe.

"WISE can see these dusty objects so far away that we will be looking back in time 10 billion years, when were forming," said Peter Eisenhardt, the mission's project scientist at JPL. "By scanning the entire sky, we’ll learn just how extreme this galaxy formation process can get."

Provided by JPL/NASA (news : web)

Explore further: Manchester scientists boost NASA's missions to Mars

add to favorites email to friend print save as pdf

Related Stories

WISE Launch Scheduled for Dec. 11

Dec 04, 2009

(PhysOrg.com) -- Launch of NASA's Wide-field Infrared Survey Explorer (WISE) from Vandenberg Air Force Base in California is scheduled for Dec. 11.

NASA to launch sky-mapping spacecraft

Dec 06, 2009

(AP) -- NASA's latest space telescope will scan the sky in search of never-before-seen asteroids, comets, stars and galaxies, with one of its main tasks to catalog objects posing a danger to Earth. The sky-mapping ...

WISE Snug in Its Nose Cone; Launch Set for Dec. 9

Dec 01, 2009

NASA's Wide-field Infrared Survey Explorer has been wrapped in the outer nose cone, or "fairing," that will protect it during its scheduled Dec. 9 launch from Vandenberg Air Force Base, Calif.

NASA OKs construction of satellite

Oct 25, 2006

NASA has approved construction of a satellite that will scan the entire sky in infrared light to detect cool stars and bright galaxies.

Recommended for you

Bad weather delays Japan asteroid probe lift off

5 hours ago

Bad weather will delay the launch of a Japanese space probe on a six-year mission to mine a distant asteroid, just weeks after a European spacecraft's historic landing on a comet captivated the world.

Manchester scientists boost NASA's missions to Mars

14 hours ago

Computer Scientists from The University of Manchester have boosted NASA space missions by pioneering a global project to develop programs that efficiently test and control NASA spacecraft.

ESA image: The gold standard

14 hours ago

The Eutelsat-9B satellite with its EDRS-A payload is shown in the anechoic test chamber of Airbus Defence and Space in Toulouse, France, having completed its final antenna pattern tests today.

Frost-covered chaos on Mars

14 hours ago

Thanks to a break in the dusty 'weather' over the giant Hellas Basin at the beginning of this year, ESA's Mars Express was able to look down into the seven kilometre-deep basin and onto the frosty surface ...

Rosetta's comet: In the shadow of the coma

21 hours ago

This NAVCAM mosaic comprises four individual images taken on 20 November from a distance of 30.8 km from the centre of Comet 67P/C-G. The image resolution is 2.6 m/pixel, so each original 1024 x 1024 pixel ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.