Spin polarization achieved in room temperature silicon

Nov 27, 2009 by Lin Edwards weblog

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, and the achievement brings spintronic devices using silicon as a semiconductor a step closer.

Spintronics, or spin electronics, is an emerging field of electronics that aims to be able to represent digital information by using the spin of as well as their charge. When fully developed, spintronic devices could profoundly change devices, computer architecture and so on, and they could reduce energy use to ultra-low levels.

Electrons are basically a two-state system with their spins either "up" or "down". For a device to work, it must have a system (the spin injector) that produces a spin-polarized electric current, which has more of its electrons in one spin state than the other. It also needs a spin detector that can detect whether the electrons are up or down.

In metallic systems spin polarization is generally achieved by passing an electric current through a ferromagnet. (It is magnetic because the electrons within it are polarized, and as they pass from the magnet to the metal they remain polarized for a short time.) Spin polarization has also been achieved at room temperature in ferromagnetic semiconductors such as manganese-doped .

Until recently spin polarization in non-magnetic semiconductors like silicon has only been achieved at temperatures of 150 K, but new research has achieved spin polarization at ambient temperature. Scientists Saroj P. Dash and colleagues at the MESA Institute for Nanotechnology at the University of Twente in The Netherlands used a single nickel-iron electrode on top of silicon, with a layer of aluminum oxide between them. When they applied a current to the electrode they observed a "puddle" of electrons in the silicon, which could then be dissipated by applying a . This caused an observable voltage drop across the contact.

As a control they inserted a layer of ytterbium between the electrode and the , since ytterbium is known to destroy spin polarization. When the current and magnetic field were applied, no voltage drop was observed, which indicates that spin polarized electrons had caused the effect.

Spintronics could eventually lead to extremely low energy use devices, and perhaps ultimately to quantum computers. More research is needed to prove the spin-polarized currents really flow through the silicon, and it may still be several years before the promised ultra-low power devices are developed.

The research was published yesterday in the journal, Nature.

More information: Electrical creation of spin in at room temperature, Nature 462, 491-494 (26 November 2009), doi:10.1038/nature08570

© 2009 PhysOrg.com

Explore further: New approach to form non-equilibrium structures

add to favorites email to friend print save as pdf

Related Stories

Spin-polarized electrons on demand

Jan 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

Jan 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Novel magnetic semiconductor puts new spin on electronics

May 24, 2006

Researchers at MIT's Francis Bitter Magnet Lab have developed a novel magnetic semiconductor that may greatly increase the computing power and flexibility of future electronic devices while dramatically reducing their power ...

Recommended for you

New approach to form non-equilibrium structures

16 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

18 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

22 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

22 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0