It's a gas: New discovery may lead to heartier, high-yielding plants

Nov 23, 2009

In a research report published in the November 2009 issue of the journal Genetics, scientists show how a family of genes (1-aminocyclopropane-1-carboxylate synthase, or ACS genes) are responsible for production of ethylene. This gas affects many aspects of plant development, and this information lays the foundation for future genetic manipulation that could make plants disease resistant, able to survive and thrive in difficult terrain, increase yields, and other useful agronomical outcomes. This discovery was made with the weed Arabidopsis thaliana, but it will be applicable to plants used in agriculture.

"I hope that this work will provide insights into how a set of genes work together like a finely tuned symphony to regulate plant growth because we may be able to use such knowledge to engineer more suited to our changing world," said Athanasios Theologis, a senior scientist at the Plant Gene Expression Center of the U.S. Department of Agriculture and the senior researcher involved in the work. "This is critically important because as the human population grows, we may need to produce more food in the same or in less space."

To understand the function and regulatory roles of each ACS gene in ethylene production during plant development, scientists from Theologis' laboratory analyzed the essential and nonessential roles of each of the family of Arabidopsis ACS genes. They found that while loss of any single ACS gene had no visible effect on the plant, it did affect the activity of other genes in the family. They grew different plants that had different combinations of these "turned on" and "turned off" and found that the members of this gene family have different but overlapping functions in plant development, such as growth, flowering time, gravitostimulation, and disease resistance.

"Ethylene gas is best known for causing fruit to ripen," said Mark Johnston, Editor-in-Chief of the journal Genetics, "but the molecule is critical to development and growth of plants. By revealing how plants regulate the amount of ethylene they produce, this study gives scientists an entirely new genetic approach for developing heartier, more productive crops. This is becoming increasingly important as our planet warms and our population grows."

More information: Atsunari Tsuchisaka, Guixia Yu, Hailing Jin, Jose M. Alonso, Joseph R. Ecker, Xiaoming Zhang, Shang Gao, and Athanasios Theologis. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-carboxylate Isoforms Regulates Ethylene Biosynthesis in . doi: 10.1534/genetics.109.107102

Source: Genetics Society of America

Explore further: Tricking plants to see the light may control the most important twitch on Earth

add to favorites email to friend print save as pdf

Related Stories

Regulating those raging (plant) hormones

Aug 21, 2007

The Biblical book of Amos describes the 8th-century BC prophet as a "gatherer" of sycomore figs. Some now think a more correct translation would be "piercer," because that's how ancient farmers got that type of fig to ripen. ...

Same gene protects from 1 disease, opens door to another

Aug 28, 2007

Botanists at Oregon State University have discovered that a single plant gene can cause resistance to one disease at the same time it produces susceptibility to a different disease – the first time this unusual phenomenon ...

Biologists solve plant hormone enigma

Jul 06, 2006

Gardeners and farmers have used the plant hormone auxin for decades and now U.S. scientists have found how plants produce and distribute the hormone.

Scientists find stem cell switch

Jul 26, 2007

Scientists have discovered how plant stem cells in roots detect soil structure and whether it is favourable for growth.

Recommended for you

Getting a jump on plant-fungal interactions

22 hours ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0