Termite creates sustainable monoculture fungus-farming

Nov 20, 2009
Termitomyces mushrooms appearing on top of a colony of fungus-growing termites (photo: Z.W. de Beer)

(PhysOrg.com) -- Food production of modern human societies is mostly based on large-scale monoculture crops, but it now appears that advanced insect societies have the same practice. Our societies took just ten thousand years of (mainly cultural) evolution to adopt this habit and we are far from convinced that it is sustainable.

Farming ants and had tens of millions of years to evolve their fungus farming systems and here monocultures are apparently evolutionary stable. In a publication in the journal Science this week, researchers from the Laboratory of Genetics of Wageningen University and the Centre for at the University of Copenhagen take significant steps to resolve this puzzle.

The fungus-growing termites of the old-world tropics build impressive mounds consisting of thousands of workers and soldiers. These societies domesticated African Termitomyces mushrooms more than 30 million years ago and became obligatorily dependent on farming their own fungal food in their often gigantic nest mounds. The termite fungus-farming symbiosis had a single African rain-forest origin and now comprises ca 330 species. It is of major ecological importance for decomposition and mineralcycling.

A colony-founding termite queen and king normally do not acquire their first garden until they have raised the first workers. These helpers collect Termitomyces spores while foraging, together with the that they defecate in the nest to establish a garden substrate. These spores are amply available because the fungus gardens produce large mushrooms once a year on top of the termite mounds.

However, this farming practice offers a paradox: Evolutionary theory predicts that symbioses with multiple lineages per colony should be unstable, because these genotypes can be expected to compete for making mushrooms rather than collaborate to serve the termite farmers.

The inside of a colony of Macrotermes natalensis in South Africa. Fungus gardens are arranged in an interconnected network of chambers, each containing a mass of masticated plant substrate in which Termitomyces grows (photo: D.K. Aanen).

The new study shows that a very special mechanism is in place to prevent this from happening. All colonies from which multiple fungal samples were genetically analyzed contained only a single fungal in spite of gardens having been initiated from at least two and probably many more genetically different spores.

Duur Aanen, Koos Boomsma and their respective colleagues in Wageningen and Copenhagen show that genotypes that happen to be common in a garden, become even more common at the expense of rarer genotypes. This happens not because common genotypes are better direct competitors, but because they have a higher chance of having an identical genotype as neighbor. Every time this happens, such genetically identical mycelia merge, which enhances the efficiency by which they produce asexual spores that the termites eat and deposit in new garden material of the colony. This process of positive reinforcement makes every colony end up with a life-time commitment to a single fungal symbiont in spite of the population at large having many fungal genotypes.

More information: Aanen, D.K., De Fine Licht, H.H., Debets, A.J.M., Kerstes, N.A.G. Hoekstra, R.F. & Boomsma J.J. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 20 november 2009

Provided by Wageningen University

Explore further: 'Killer sperm' prevents mating between worm species

add to favorites email to friend print save as pdf

Related Stories

Long-term co-evolution stability studied

Jun 27, 2006

U.S. biologists say the world's fungus-farming ants cultivate essentially the same fungus and aren't as critical to fungi reproduction as had been thought.

Farming and chemical warfare: A day in the life of an ant?

Nov 17, 2008

One of the most important developments in human civilisation was the practice of sustainable agriculture. But we were not the first - ants have been doing it for over 50 million years. Just as farming helped humans become ...

Scientists reveal ants as fungus farmers

Mar 24, 2008

It turns out ants, like humans, are true farmers. The difference is that ants are farming fungus. Entomologists Ted Schultz and Seán Brady at the Smithsonian’s National Museum of Natural History have published ...

Recommended for you

'Killer sperm' prevents mating between worm species

14 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

17 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Researcher reveals how amphibians crossed continents

19 hours ago

There are more than 7,000 known species of amphibians that can be found in nearly every type of ecosystem on six continents. But there have been few attempts to understand exactly when and how frogs, toads, ...

User comments : 0