'Fingerprinting' RFID Tags: Researchers Develop Anti-Counterfeiting Technology

Nov 19, 2009

(PhysOrg.com) -- Engineering researchers at the University of Arkansas have developed a unique and robust method to prevent cloning of passive radio frequency identification tags. The technology, based on one or more unique physical attributes of individual tags rather than information stored on them, will prevent the production of counterfeit tags and thus greatly enhance both security and privacy for government agencies, businesses and consumers.

“RFID tags embedded in objects will become the standard way to identify objects and link them to the cyberworld,” said Dale R. Thompson, associate professor of computer science and computer engineering. “However, it is easy to clone an RFID tag by copying the contents of its memory and applying them to a new, counterfeit tag, which can then be attached to a counterfeit product - or person, in the case of these new e-passports. What we’ve developed is an electronic fingerprinting system to prevent this from happening.”

Thompson and Jia Di, associate professor of computer science and computer engineering and co-principal investigator on the project, refer to the system as a fingerprint because they discovered that individual tags are unique, not because of the data or memory they contain, but because of radio-frequency and manufacturing differences.

As Thompson mentioned, RFID tags are becoming more prevalent. They have been used in a wide range of applications, including government processes, industry and manufacturing, supply-chain operations, payment and administration systems, and especially retail.

“In spite of this wide deployment, security and privacy issues have to be addressed to make it a dependable technology,” Thompson said.

A passive RFID tag harvests its power from an RFID reader, which sends radio frequency signals to the tag. The tag, which consists of a connected to a radio antenna, modulates the signal and communicates back to the reader. Working with an Avery Dennison M4E testcube designed for determining the best placement of RFID tags on packages, Thompson, Di and students in the Security, Network, Analysis and Privacy Lab measured tags’ minimum power response at multiple frequencies.

The researchers did this using an algorithm that repeatedly sent reader-to-tag signals starting at a low power value and increasing the power until the tag responded. Radio frequencies ranged from 903 to 927 megahertz and increased by increments of 2.4 megahertz. These measurements revealed that each tag had a unique minimum power response at multiple radio frequencies. Moreover, power responses were significantly different for same-model tags.

“Repeatedly, our experiments demonstrated that the minimum power response at multiple frequencies is unique for each tag,” Thompson said. “These different responses are just one of several unique physical characteristics that allowed us to create an electronic fingerprint to identify the tag with high probability and to detect counterfeit tags.”

Like other electronics equipment, cost and size have driven development of RFID technology. This emphasis means that most tags have limited computational capabilities; they do not include conventional encryption algorithms and security protocols to prevent cloning and counterfeiting. The electronic fingerprinting system addresses these concerns without increasing the cost or physically modifying the tag, Thompson said. The method can be used along with other security protocols for identification and authentication because it is independent of the computational capabilities and resources of the tag.

Thompson and Di are also developing network circuits that are resistant to side-channel attacks against readers and tags.

Provided by University of Arkansas (news : web)

Explore further: Researchers propose network-based evaluation tool to assess relief operations feasibility

add to favorites email to friend print save as pdf

Related Stories

NIST Issues Guidelines for Ensuring RFID Security

Apr 27, 2007

Retailers, manufacturers, hospitals, federal agencies and other organizations planning to use radio frequency identification (RFID) technology to improve their operations should also systematically evaluate the possible security ...

Researchers to Boost 'Smart Tag' Security

Sep 26, 2006

Johns Hopkins researchers will take part in a new multi-institution project to improve the security of "smart tags," the wireless devices that allow drivers to zip through automatic tollbooths and let workers enter a secured ...

RFID might help track first responders

Mar 31, 2006

A National Institute of Standards and Technology team is studying the feasibility of using radio frequency identification technology during emergencies.

Recommended for you

Large streams of data warn cars, banks and oil drillers

5 hours ago

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...