Pushing light beyond its known limits

Nov 12, 2009
A researcher is testing an optical fiber system in the Institute for Photonics & Advanced Sensing, University of Adelaide. Credit: Photo by Jennie Groom.

Scientists at the University of Adelaide have made a breakthrough that could change the world's thinking on what light is capable of.

The researchers in the University's new Institute for Photonics & Advanced Sensing (IPAS) have discovered that within optical fibers can be squeezed into much tighter spaces than was previously believed possible.

Optical fibers usually act like pipes for light, with the light bouncing around inside the pipe. As you shrink down the size of the fiber, the light becomes more and more confined too, until you reach the ultimate limit - the point beyond which light cannot be squeezed any smaller.

This ultimate point occurs when the strand of glass is just a few hundred nanometers in diameter, about one thousandth of the size of a human hair. If you go smaller than this, light begins to spread out again.

The Adelaide researchers have discovered they can now push beyond that limit by at least a factor of two.

They can do this due to new breakthroughs in the theoretical understanding of how light behaves at the nanoscale, and thanks to the use of a new generation of nanoscale optical fibers being developed at the Institute.

This discovery is expected to lead to more efficient tools for optical data processing in telecommunications networks and optical computing, as well as new light sources.

IPAS Research Fellow Dr Shahraam Afshar has made this discovery ahead of today's launch of the new Institute for & Advanced Sensing.

This is Dr. Shahraam Afshar, Research Fellow with the Institute for Photonics & Advanced Sensing, University of Adelaide. Dr. Afshar theorized that light could be squeezed into much tighter spaces than was previously believed possible. Those theories have now been proven. Credit: Photo by Jennie Groom

IPAS is a world leader in the science and application of light, developing unique lasers, optical fibers and sensors to measure various aspects of the world around us.

"By being able to use our optical fibers as sensors - rather than just using them as pipes to transmit light - we can develop tools that, for example, could easily detect the presence of a flu virus at an airport; could help IVF (in vitro fertilization) specialists to determine which egg should be chosen for fertilization; could gauge the safety of drinking water; or could alert maintenance crews to corrosion occurring in the structure of an aircraft," says Professor Tanya Monro, Federation Fellow at the University of Adelaide and Director of IPAS.

Professor Monro says Dr Afshar's discovery is "a fundamental breakthrough in the science of light".

Another IPAS researcher, Dr Yinlan Ruan, has recently created what is thought to be the world's smallest hole inside an - just 25 nanometers in diameter.

"These breakthroughs feed directly into our applied work to develop nanoscale sensors, and they are perfect examples of the culture of research excellence that exists among our team members," Professor Monro says.

"They will enable us to study the applications of light at much smaller scales than we've ever thought possible. It will help us to better understand and probe our world in ever smaller dimensions."

Source: University of Adelaide (news : web)

Explore further: Bake your own droplet lens

add to favorites email to friend print save as pdf

Related Stories

Silicon optical fiber made practical

Oct 28, 2008

Scientists at Clemson University for the first time have been able to make a practical optical fiber with a silicon core, according to a new paper published in the current issue of the Optical Society's open-access journal, ...

A Broadband Light Amplifier on a Photonic Chip

Jul 06, 2006

Cornell University researchers have created a broadband light amplifier on a silicon chip, a major breakthrough in the quest to create photonic microchips. In such microchips, beams of light traveling through ...

Discovery cuts cost of next generation optical fibers

Jan 17, 2008

Scientists have discovered a way of speeding up the production of hollow-core optical fibres - a new generation of optical fibres that could lead to faster and more powerful computing and telecommunications ...

Recommended for you

Bake your own droplet lens

13 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

Precise control of optical frequency on a chip

Apr 23, 2014

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

frajo
2.3 / 5 (4) Nov 12, 2009
There's no scientific content. Just the word "breakthrough" and some unscientific terms like "squeezing light".
Alexa
3.5 / 5 (4) Nov 12, 2009
What they found is, by using of special geometry of unimode optical fiber can be achieved, light pulse is propagating like soliton, which is autofocusing and reinforcing itself like wave in Russel's aquaduct.

http://coephotoni...ode1.jpg

Analogously, it's well known, inside of channel of conical profile soliton wave is propagating in sharper form, then along flat channel, because such profile increases a nonlinear behavior of soliton waveguide.
YawningDog
3.5 / 5 (2) Nov 12, 2009
I agree. I've been getting more from the comments lately than the articles themselves.
PeterROwen
1 / 5 (1) Nov 13, 2009
Are we able to manufacture photon-conduits of the order of the Planck-length?
Alexa
3 / 5 (2) Nov 13, 2009
Are we able to manufacture photon-conduits of the order of the Planck-length
Nope, the smallest waveguides achieved are formed by thin metal wires and they're spreading EM field in form of surface waves (so called surface plasmons) of electron fluid, which is filling metals. Due its density, these waves can be up to ten times smaller, then the ordinary waveguides (in 30 - 60 nm range). This is currently technological limit for directional spreading of EM waves.
antialias_physorg
3.5 / 5 (4) Nov 15, 2009
Are we able to manufacture photon-conduits of the order of the Planck-length?


The Planck length is 100000000000000000000 times smaller than the diameter of a proton. The best conceivable manufacturing processes would scale down to atomic size (which is still a good bit larger than a proton in diameter). So no - Planck length size waveguides are pretty unlikely to ever come about.

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.